Please label the file with the Department Name

Course Code	Math (E)-1.1.1												
Course Title	Engineering Mathematics-I												
Course Credit	3(2+1)												
Objectives of	1. The goal of this course is to achieve conceptual understanding and to												
Course	retain the best traditions of traditional calculus.												
	2. The syllabus is designed to provide the basic tools of calculus mainly for												
	the purpose of modelling the engineering problems mathematically and												
	obtaining solutions.												
	3. This is a foundation course which mainly deals with topics such as single												
	variable and multivariable calculus and plays an important role in the												
	understanding the problem of agricultural engineering.												
Course	Matrices: Elementary transformations, rank of a matrix, reduction to normal												
Content	form, Gauss-Jordon method to find inverse of a matrix, Eigen values and Eigen												
	vectors, Cayley-Hamilton theorem, linear transformation, orthogonal												
	transformations, diagonalization of matrices, quadratic forms. PAQ form, Echelon												
	form, Solution of linear equations, nature of rank, using Cayley-Hamilton theorem to find inverse of A.												
	to find inverse of A. Differential coloring: Taylor's and Maslavin's symposium indeterminate forms.												
	urvature, function of two or more independent variables, partial differentiation,												
	urvature, function of two or more independent variables, partial differentiation, nomogeneous functions and Euler's theorem, composite functions, total												
	privatives, maxima and minima.												
	tegral calculus: volumes and surfaces of revolution of curves; double and triple												
	ntegrals, change of order of integration, application of double and triple integrals												
	to find area and volume.												
	Vector calculus: Differentiation of vectors, scalar and vector point functions,												
	vector differential operator Del, Gradient of a scalar point function, Divergence and Curl of a vector point function and their physical interpretations, identifies												
	involving Del second order differential operator: line surface and volume												
	integrals Stoke's divergence and Green's theorems (without proofs)												
References	Narayan Shanti, 2004, Differential Calculus, S. Chand and Co. Ltd. New												
	Delhi												
	Narayan Shanti 2004 Integral Calculus S Chand and Co. Ltd. New												
	Delhi												
	Grewal B S 2004 Higher Engineering Mathematics Khanna Publishers												
	Dolbi												
	Defini. Nerovan Shanti 2004, A Tayt Back of Vestor, S. Chand and Co. Ltd												
	Narayan Shahu. 2004. A Text Book of Vector. S. Chand and Co. Ltd.												
Course	At the end of the course learners will be able												
Outcomos	CO1 :Use both the limit definition and rules of differentiation to differentiate												
Outcomes	functions, apply L'Hospital's rule to solve indeterminate forms.												
	CO2 : Apply partial differentiation to solve maxima and minima problems.												
	CO3: Apply integration to compute multiple integrals, area, volume, integrals in												
	polar coordinates, in addition to change of order and change of variables.												
	CO4: Matrix Algebra is one of the powerful tools to handle practical problems												
	arising in the field of engineering.												
Monning hotw	Cos. Apply vector calculus to solve steady state now problems.												
CO	$\frac{PO}{PO} = \frac{PO}{PO}$												
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
	2 3 7 5 0 7 60 7 10 11 12 1 2 3												
C01													
CO2													
C03													
C04													

Course Code	Phy (E)-101
Course Title	Engineering Physics
Course	3 (2+1)
Credit	
Objectives of	1. To develop a conducive environment for technical education and
Course	research with expertise in engineering problem-solving approaches in
	agriculture and allied sectors with adequate knowledge and skill.
	2. To enhance the ability and promote all-round development of the
	students for formulating solutions to real-world problems pertaining to
	sustained agricultural productivity using modern technologies and to
	create a sense of social responsibility.
	3. To strengthen industry-institution linkage with leading national and
	along with other stellaholders, for promoting technologies
	along with other stakeholders, for promoting techno-entrepreneurship
Course	among students.
Content	Theory.
	Die Dershand forromagnatism classification. Langevin theory of die and
	Dia, Paradand terromagnetism-classification. Langevin theory of dia and
	and ferromagnetism. Curie Weiss law, Wave particle quality de Broglie
	concept uncertainty principle Wave function Time dependent and time
	independent Schrödinger wave equation. Qualitative explanation of
	Zeeman effect, Stark effect and Paschan Back effect, Raman
	spectroscopy. Statement of Bloch's function. Bands iii solids, velocity of
	Bloch's electron and effective mass. Distinction between metals.
	Insulators and semiconductors. Intrinsic and extrinsic semiconductors,
	law of mass action. Determination of energy gap in semiconductors.
	Donors and acceptor levels. Superconductivity, critical magnetic field.
	Meissner effect. Isotope effect. Type-I and II superconductors,
	Josephson's effect DC and AC, Squids. Introduction to high Tc
	superconductors.
	Spontaneous and stimulated emission, Einstein A and B coefficients.
	Population inversion, He-Ne and Ruby lasers. Ammonia and Ruby
	Mode type, input output characteristics of optical fiber and applications
	Illumination: laws of illumination luminous flux luminous intensity
	candle power, brightness.
	Practical·
	To find the frequency of A C supply using an electrical vibrator: To find
	the low resistance using Carey Foster bridge without calibrating the bridge
	wire: To determine dielectric constant of material using De Sauty's bridge:
	To determine the value of specific charge (e/m) for electrons by belical
	method: To study the induced e m f as a function of velocity of the
	magnet: To obtain hysteresis curve (B-H curve) on a CRO and to
	determine related magnetic quantities: To study the variation of magnetic
	field with distance along the axis of a current carrying circular coil and to
	detuning the radius of the coil. To determine the energy hand gap in a
	semiconductor using a p-n Junction diode. To determine the slit width
	from Fraunhofer diffraction nattern using laser heam. To find the
	numerical aperture of optical fiber. To set up the fiber optic analog and
	digital link. To study the phase relationships in L R circuit. To study LCP
	circuit: To study the variations of thermo amf of a conner constantan
	thermo-couple with temperature. To find the wave length of light by
	nermo-couple with temperature, to this me wave length of light by
	prism.

o., nd ati m,													
nd ati m,													
ati m,													
m,													
m,													
6. Vasudeva D N. Fundamentals of Magnetism and Electricity. S. Chand and Co., New Delhi.													
At the end of the course, learners will be able to													
CO1: Gain knowledge of new concept in the solution of practical oriented													
to													
nd													
to													
10													
ns													
110,													
,													
ŕ													
to													
to s.													
to s.													
to ts.													
to s.													
to .s.													
to :s.													
to s.													
to ts.													
1 - 1													

Course	Chem(E)-1.1.3
Code	
Course	Engineering Chemistry
Title	
Course	3(2+1)
Credit	
Objectives	1. To familiarize the students with the three main types of particle size,
of Course	especially colloidal size and how their physical properties changes with
	size and different dispersion systems.
	2. To inculcate sound understanding of water quality parameters and
	disadvantages of hard water in industry as well as domestic use.
	3. To impart knowledge on the types of lubricant and its functions.
	4. To introduce the basic concepts and applications of phase rule and composites.
	5. To facilitate the understanding of important characteristics of fuels, their properties and drawbacks of different types of fuels.
	6. To introduce basic introduction to main components of Food chemistry, their classification, importance and deficiency diseases.
	7. To impart knowledge on Corrosion-Its causes, types and methods of prevention.

Course		Theo	rv:												
Content		Ph	ase ru	le and	d its a	appli	catio	1 to c	one ai	nd two	comp	onent s	vster	ns. F	uels:
		clas	ssificat	ion.	Cal	orific	e va	lue.	Coll	loids:	classi	ficatio	n. P	roper	rties.
		Coi	rrosion	: cau	ses. 7	Types	and	meth	od of	preve	ntion.	Water:	temp	orary	and
		per	manen	t hai	dnes	s. D	isadv	antag	ges o	of hard	d wate	er, sca	le an	d sli	udge
		for	mation	in b	oiler	s, bo	iler d	corro	sion.	Analy	tical r	nethod	s like	e the	mo-
		gra	vimetr	ic. P	olarc	grap	hic a	naly	sis. I	Nuclea	r radi	ation.	Deteo	ctors	and
		ana	lytical	appl	icatio	ons of	f radi	oacti	ve m	aterial	s. Enz	ymes a	nd th	eir u	se in
		the	manu	factu	ring	of et	hano	and	acet	ic acid	l by fe	ermenta	ation	meth	ods.
		Prii	nciples	of of	foo	od o	chem	istry.	Int	troduct	tion t	to lip	ids,	prot	eins,
		carl	bohydı	rates,	vita	mins	, fo	od p	reselt	tators,	colou	ring a	nd f	lavou	iring
		reag	gents	of fo	od. 1	Lubri	cants	s pro	pertie	es med	chanisi	n. clas	sifica	ation	and
		test	s. Poly	mers	. Typ	bes of	poly	meri	zatio	n. prop	erties.	Uses a	nd me	ethod	s for
		the	deterr	ninat	ion c	of mo	olecu	lar w	reight	t of po	olymer	s. Intro	oducti	ion to	o IR
		spe	ctrosco	opy.											
		Pract	tical:												
		Det	ermina	ation	of te	empo	rary a	and p	berma	anent h	nardnes	ss of w	vater	by E	DTA
		met	thod: I	Estim	ation	of c	hlori	de in	wate	er: Esti	matior	n of dis	solve	ed ox	ygen
		in v	water:	Detei	mina	ation	of B	OD i	n wat	ter sam	nple: D) etermi	natio	n of	COD
		in v	water	samp	le: E	stima	ation	of a	vailal	ble chl	lorine	in blea	ching	g pov	vder:
		Det	ermina	ation	of vi	iscosi	ity of	oil:	Estin	nation	of acti	vity of	wate	er sar	nple:
		Est	imatio	n o	f a	lkali	nity	of	wat	ter s	ample	Dete	ermin	ation	of
		carl	carbonate and non- carbonate hardness by												
		sod	soda reagent: Determination of coagulation of water and chloride ion												
		con	tent:	Dete	rmina	ation	of	spec	ific	rotatic	on of	an o	ptical	ly a	ctive
		con	npound	d: De	termi	inatic	on of	Xnax	and	verific	cation (of Beer	Lam	ibert	Law:
		Det	ermina	ation	of	ca	lorifi	c v	alue	of	fuel:	Ide	ntific	ation	of
		tun		l gro	ups	(alco	ohol,	alde	lyde,	keton	ies, ca	rboxyl	1c ac	cid a	nda
		mic	$(e) b_1$	y IF	K: (hron	natog	raph	ic ai	nalysis	: Dete	ermina	10n	of r	nolar
De		refr	action	01 01	gani	c con		nds.		CI	• • •		<u>р</u> :	1.1.	1.
Reference	es	Jan	1 P L a	na Ja	in M	. 199 Dalh	'4. Er :	igine	ering	Cnem	istry. I	Janpat	Kai p	publis	sning
		CON			Llu., Dob	Dein	1. T.,1;	חם	200	7 E	ntiala	of Dhu	ricol		
		Cha	II D S,		'banc	li and		עם [td	. 200 Delh	7. ESSC ;	muais	of Fily	sical		
Course			ninsu j ne end	of the		rse 1	earne	ers w	ill he	ahle					
Outcome	s	CO	l: To a	nalvs	e the	aual	ity of	fwat	er sar	nples y	with re	spect to	o thei	r	
0	2	hard	ness. a	cidit	v. alk	alini	tv an	d DO).			speere			
		CO2	2: Abil	ity to	Iden	tify v	vario	18							
		func	tional	group	o (alc	ohol	, alde	elyde	, ket	ones,	carbox	ylic a	cid a	nd a	mid
		e) b	y IR.					•				•			
		CO3	B:Deve	lop f	amili	arity	with	the b	oasic	food c	compo	nents li	ke V	itami	ns,
		Carb	ohydr	ates,	Prote	ins ,l	Enzy	mes							
		CO4	: Abil	ity to	diffe	erenti	ate d	iffere	ent ty	pes of	polym	ers and	l its		
		appl	ication	is in c	lay to	o day	use a	and in	ndust	rial ap	plication	ons.			
		COS	5:To ju	dge t	he qu	ality	of fu	iel.							
Mapping	be	tweer	ı Cos,	POs	and	PSO	s						1	n ~ -	
CO	-				-	-	PO			10		1.0		PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
				-											
C04															
005															

Course Co	de	Ag	(E)-1	.1.4											
Course Tit	tle	Pri	ncipl	es of	Soil	Scier	ice								
Course Cr	edit	3(2	+1)												
Objective	of	1)	To	expose	e the	stude	nts to	the	funda	ment	al kn	owledg	ge on	Soil pl	hysical
Course	-	,	para	meter	s, Per	meab	ility -	- Con	npacti	on, E	Bearin	g Cap	acity a	nd typ	es and
course			meth	ods o	f soil	surve	y and	inter	pretati	ive gr	oupin	igs			
		2)	Stud	ents s	hould	l be a	ble to	verif	y vari	ious q	uality	aspec	ets of s	oil and	l water
			studi	led in	theory	y by p	perfor	ming	experi	iment	s in tl	ne labo	ratory.		
Course		Theo	ory:												
Content		Natu comj order	re and positions; in	d orig on, so porta	in of s oil foi nt soi	ming	proc sical	ming esses prope	rocks , clas erties;	and r sifica and	tion (their	of soil impor	s $-$ so tance;	sification of taxo soil p	on and onomy article
		charg comp	ge; io position	n; soi n exc on an	hange d dec	ganic in so ompo	collo oil an sition	d nuti d nuti , effe	rient a ct on	vaila soil	bility fertili	n, prop ; soil c ty; soi tial pla	organic l react	and on matter ion – a	r - its acidic,
		func	Sunctions and deficiency symptoms in plants; important inorganic fertilizers and heir reactions in soils. Use of saline and sodia water for aron production. Gymsum												
		their	heir reactions in soils. Use of saline and sodic water for crop production, Gypsum												
		requi	equirement for reclamation of sodic soils and neutralising RSC; Liquid fertilisers												
		Prace	and their solubility and compatibility.												
		Identi	Practical:												
		Colled	entification of rocks and minerals; Examination of soil profile in the field; entities of soil sample: Determination of bulk density particle density and												
		porosi	prosity of soil: Determination of organic carbon of soil: Determination of												
		Nitrog	gen,	Deter	minat	ion	of Pl	hosph	orus	and	Dete	rminat	ion o	f Pota	issium;
		Identi	fication	on of	nutrie	nt def	icien	cy syr	nptom	ns of c	crops	in the	field; I	Determ	ination
		of gyp	osum	requir	emen	t of so	odic s	oils; I	Detern	ninati	on of	water	quality	y param	eters.
References	s:	Brad	ly Nyl	e C a	nd Ra	y R V	Vell. 2	2002.	Natur	e and	prope	erties o	of soils	. Pearso	on
		Educ	cation	Inc.,	New I	Delhi		000 1	Com da		ala af	C .: 1 C		TADI	Marri
		Inuia Dolh	in 500 .;	ciety (01 501	I Scie	nce. I	998.1	runda	imenta	als of	2011 2	cience	IAKI,	new
		Sehoa	u. 11 A	Tex	thook	of Pe	edoloe	v Co	ncente	sand	Annli	cation	s Kalv	ani	
		Publis	shers.	New	Delhi	. Hille	d D.	1982.	Introd	luctio	n to S	Soil Ph	vsics.	Acaden	nic
		Press,	Lond	lon.									5	100000	
Course		At the	e end	of th	e cou	rse, l	earne	ers wi	ll be	able					
Outcomes		CO1:	To u	nderst	and th	ne fun	dame	ntal k	nowle	edge o	of soil	physic	cal par	ameter	s.
		CO2 :	To P	erforn	n a soi	il surv	vey an	d clas	ssify s	oil ba	used o	n its cl	haracte	ristics	and
		explai	in the	phase	relati	ionshi	ip and	l soil (compa	action	•				
		CO3:	Toex	kplain	soil p	ohysic	al pro	opertie	es and	com	pare t	he prop	perties	based	on soil
		and w $CO4$	ater s	ystem nalve	l a tha c	oil ch	omic	al nro	nortio	e to c	laccif	u tha a	rahla a	nd nrol	alam
		soils t	o dev	elon (liffere	ent rec	lamat	tion n	ractic	es es	145511	y the a		nu prot	Jiem
		CO5	– To a	analys	e the	Engir	neerin	g proi	perties	s of so	oil and	d Unde	erstand	Conce	pts of
		bearin	ng cap	acity	and sl	lope s	tabilit	ty.							1
Mapping b	oetw	een C	'os, P	Os a	nd PS	SOs									
CO						F	0							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
$\frac{001}{002}$															
CO2															
CO4															
CO5															

Course Co	de	C	E-1.1	.5											
Course Tit	tle	Sı	ırvey	ving a	and I	level	ling								
Course Cr	edit	3((1+2)												
Objectives	of		• U	nders	tand	conv	entio	nal a	nd m	odern r	nethod	s of su	rveyi	ng.	
Course			D	evelo	p abi	lity t	o trai	nsfori	n bas	sic cond	cept of	survey	ing to	o field	1
			рі	actic	e.	•					•		C		
			• In	terpr	et pla	ns ar	nd ma	aps fo	r pla	nning a	and sett	ing out	twor	ks.	
			• U	nders	tand	mode	ern si	urvey	ing te	echniqu	les for	mappii	ıg.		
Course		Cour	se C	onter	nt:			ľ		^			0		
Content	r	Гheo	rv:												
		Surve	eving	: In	trodu	ction	, cla	assifi	catio	n and	basic	princ	ciples	. Li	near
	1	measurements. Chain surveying. Cross staff survey, Compass survey.													
	1	Planimeter, Errors in measurements, their elimination and correction. Plane													
	t	table surveying. Levelling, Levelling difficulties and error in levelling,													
	(Contouring, Computation of area and volume. Theodolite traversing.													
]	Introduction to setting of curves. Total station, Electronic Theodolite.													
]	Introductio													
	1	n to GPS													
	5	survey													
]	Practical:													
	C	Chain survey of an area and preparation of map; Compass survey of an area													
	aı	nd plotting of compass survey; Plane table surveying; Levelling. L section													
	aı	and X sections and its plotting; Contour survey of an area and preparation of													
	co	ontou	ir ma	ap; I	ntrod	luctio	on of	f sof	tware	in di	rawing	conto	ur; _	Theor	lolite
	sı sı	irvey	ving;	Rang	ing	by T	heod	olite,	Heig	ght of	object	by usi	ng T	heod	olite;
D 4	S	etting	g out	curve	es by	Theo	odolit	e; M1	nor 1	nstrum	ents. U	se of to	otal s	tation	l .
References	5	٠	Pun	mia,ł	3 C 1	987.	Surv	eying	(Vol	I.I). La	xmi Pu	blicatio	ons, N	New	
			Dell	ni.									_		
		٠	Aro	ra K	R 19	990.	Surv	eying	g (Vo	I.I), Sta	indard	Book H	louse	e, Del	hi.
		•	Kan	etkar	ΤP	1993	. Sur	veyin	g and	l Level	ling. P	une Vio	lyartl	hi Gri	iha,
~			Prak	<u>casha</u>	n, Pu	ne.									
Course	A	t the	end of	of the	coui	se, le	earne	rs wi	l be a	able					
Outcomes	C	:01:	Use c	conve	ntior	al in	strun	ients	to ma	ap the p	parcels	of land	l.		
	C	:02:	Show	v effe	ctive	ness (of mo	odern	surv	eying i	nstrum	ents to	ımpr	ove	
	a	ccura	cy an	id to :	save	time	and f	or su	rvey	ng ope	rations	1 1		<i></i>	
	C	03:	Anal	yze ti	ne pro	oblen	ns of	com		on of a	rea and	i volun	ne, se	tting	out
			ves ai		orks u	ising	surve	eying	KNOV	vieage.		ionin a	and -		na
Monning k		$\frac{04}{2000}$	Appi		e the		or mo	dem	techn	iiques i	or surv	eying		nappi	ng
	Jetwo		.us, I	US a	mu r	508	PO							DCU	
	1	2	2	Δ	5	6	7	8	0	10	11	12	1	130	3
C01	1	4	5		5	U	/	0	7	10	11	14	1	4	5
CO1															
C03															

Course Code	CE-1.1.6
Course Title	Engineering Mechanics
Course	3(2+1)
Credit	
Objectives of	1. To understand the concept of basic engineering mechanism.
Course	2. Understand the force systems and draw free body diagram to analyze
	rigid body equilibrium.
	3. Comprehend the principles of friction and solve engineering
	mechanics problems associated with frictional force.
	4. Compute the centroid, first moment and second moment of an area.
Course	S. Understand the concept of motion of particles and rigid bodies.
Content	Course Content.
Content	Desig concents of Engineering Machanias Force systems Contraid
	Moment of inertia Erea body diagram and aquilibrium of forces
	Frictional forces Analysis of simple framed structures using methods of
	ioints methods of sections and graphical method. Simple stresses Shear
	force and bending moment diagrams
	Stresses in beams, Torsion, Analysis of plane and complex stresses.
	Practical:
	Problems on composition and resolution of forces, moments of a force.
	couples, transmission of a couple, resolution of a force into a force & a
	couple; Problems relating to resultant of; Co-planer force system,
	collinear force system, concurrent force system, co-planer concurrent
	force system, co-planer non - concurrent force system, Non-coplaner
	concurrent force system, Non-coplaner non-concurrent force system,
	system of couples in space; Problems relating to centroids of composite
	areas; Problems on moment of inertia, polar moment of inertia, radius of
	gyration, polar radius of gyration of composite areas; Equilibrium of
	concurrent – co-planer and non - concurrent – co-planer force systems;
	Problems involving frictional forces; Analysis of simple trusses by
	method of joints and method of sections; Analysis of simple trusses by
	Broblems on shear force and handing moment diagrams. Droblems
	relating to stresses in beams: Problems on torsion of shafts: Analysis of
	plane and complex stresses
References	Suggested Readings
iterer ences	 Sundaraian V 2002 Engineering Mechanics and Dynamics Tata
	McGraw Hill Publishing Co. Ltd. New Delhi
	 Timoshenko S and Young D H 2003. Engineering Mechanics.
	McGraw Hill Book Co., New Delhi.
	• Prasad I B 2004. Applied Mechanics. Khanna Publishers. New
	Delhi.
	• Prasad I B 2004. Applied Mechanics and Strength of Materials.
	Khanna Publishers, New Delhi.
	• Bansal R K 2005. A Text Book of Engineering Mechanics.
	Laxmi Publishers, New Delhi
Course	At the end of the course, learners will be able
Outcomes	CO1 : Students will understand the concepts of engineering mechanics.
	CO2 : Students will understand the vectorial representation of forces and
	moments.
	CO3: Students will gain knowledge regarding centre of gravity and
	moment of inertia and apply them for practical problems.

		C	CO4: Students will gain knowledge regarding various types of forces and												
		re	actio	ns a	and o	draw	free	boo	iy d	iagram	to c	luicker	solı	utions	s for
		co	ompli	cated	l proł	olems	5.								
		CO5: Student will gain knowledge on friction on equilibrium and its													
		application.													
Mapping between Cos, POs and PSOs															
СО							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Cod	e ME 1.1.7
Course Title	Engineering Drawing
Course	2 (0+2)
Credit	
Objectives	1. To Develop understanding of basic rules of engineering drawing,
of Course	dimensioning, drawing scales, First and third angle projections, and
	orthographic Projection.
	2. To develop skill for projection of points, lines, planes, and solids,
	Sectioning
	3. To equipped with drawing skill i.e. working drawing, missing views,
	sectional drawings.
	4. Draw isometric projection and perspective views of an object/solid.
	5. Introduction to various joints, fasteners, fittings and their drawing.
Course	Introduction of drawing scales: First and third angle methods of projection
Content	Principles of orthographic projections: References planes: Points and lines in
content	space and traces of lines and planes. Auxiliary planes and true shapes of
	oblique plain surface. True length and inclination of lines: Projections of
	solids (Change
	of position method alteration of ground lines): Section of solids and
	Interpenetration of solid surfaces: Development of surfaces of geometrical
	solids: Isometric projection of geometrical solids. Preparation of working
	drawing from models and isometric views Drawing of missing views
	Different methods of dimensioning Concept of sectioning Revolved and
	oblique sections. Sectional drawing of simple machine parts. Types of rivet
	heads and riveted joints. Processes for producing leak proof joints. Symbols
	for different types of welded joints. Nomenclature, thread profiles, multi start
	threads left and right hand threads Square headed and hexagonal nuts and
	holts Conventional representation of threads Different types of lock nuts
	study machine screws can screws and wood screws Foundation bolts. Forms
	of screw threads representation of threads Bolts- headed centre stud screws
	set screws but hexagonal and square keys-types taper rank taper hollow
	saddle etc
References	Bhat N.D. 2010 Elementary Engineering Drawing Charotar Publishing House
References	Pvt I td Anand
	t N D and Panchal V M 2013 Machine Drawing Charotar Publishing House
	Pvt I td Anand
	Narayana K L and Kannaiah P 2010 Machine Drawing Scitech Publications
	(India) Pvt Ltd Chennai
Course	At the end of the course learners will be able
Outcomes	CO1 : Discuss about basic rules of engineering drawing dimensioning
Guttomes	drawing scales. First and third angle projections, and orthographic Projection.

CO2: Draw the projection of points, lines, planes, solid.CO3: Apply the concept of drawing in practical applications.CO4: Draw the various views and working drawings.

CO5: Understand the application of joints, fasteners and fitting and drawings
--

Mapping	Mapping between Cos, POs and PSOs															
CO		PO PSO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4																
CO5																

Course Code	ME-1.1.8
Course Title	Heat & Mass Transfer
Course	2+0
Credit	
Objectives	1. To develop a foundational understanding of introductory concepts in
of Course	heat transfer.
	2. To gain proficiency in solving the general differential equation of
	conduction, convection, and radiation.
	3. To investigate convection processes, covering free and forced
	convection.
	4. To develop a comprehensive understanding of radiation principles
	including absorptivity, reflectivity, and transmissivity of radiation.
	5. Apply heat transfer principles to analyse heat exchangers, considering
	fouling factors, LMTD, heat exchanger performance, and transfer
	units.
Course	Concept, modes of heat transfer, thermal conductivity of materials
Content	measurement. General differential equation of conduction. One dimensiona
	steady state conduction through plane and composite walls, tubes, and spheres
	with and without near generation. Electrical analogy. Insulation materials
	Fins, Free and forced convection. Newton's law of cooling, heat transfer
	Useful non dimensional numbers. Equation of laminar boundary layer on flag
	plate and in a tube. I aminar forced convection on a flat plate and in a tube
	Combined free and forced convection Introduction Absorptivity reflectivity
	and transmissivity of radiation Black body and monochromatic radiation
	Planck's law. Stefan-Boltzmann law. Kirchoff's law. grev bodies and emissive
	power, solid angle, intensity of radiation. Radiation exchange between black
	surfaces, geometric configuration factor. Heat transfer analysis involving
	conduction, convection, and radiation by networks. Types of heat exchangers
	fouling factor, log mean temperature difference, heat exchanger performance
	transfer units. Heat exchanger analysis restricted to parallel and counter flow
	heat exchangers. Steady state molecular diffusion in fluids at rest and ir
	laminar flow, Flick's law, mass transfer coefficients. Reynold's analogy.
References	1. Geankoplis C.J. 1978. Transport Port Processes and Unit
	Operations. Allyn and Bacon Inc., Newton, Massachusetts.
	2. Holman J P. 1989. Heat Transfer. McGraw Hill Book Co., New
	Delhi.
	3. Incropera F P and De Witt D P. 1980. Fundamentals of Heat and
	Mass Transfer. John Wiley and Sons, New York.
	4. Gupta C P and Prakash R. 1994. Engineering Heat Transfer. Nem
	Chand and Bros., Roorkee.

Course	A	t the	end	of the	cour	se, le	earne	rs wil	ll be a	able					
Outcomes	0	CO1 :	Appl	ied U	Jnde	rstan	ding	of H	eat T	ransfe	er Fun	damen	tals:	Grad	uates
	W	vill d	emor	istrat	e an	app	lied	unde	rstanc	ding of	f intro	ductor	y hea	at tra	nsfer
	c	oncep	ots, ir	ncludi	ing m	odes	of he	eat tra	ansfe	r and th	nermal	conduc	ctivity	y, util	izing
	a	pprop	oriate	meas	suren	nent t	echn	iques	in pr	actical	scenar	ios.			
	0	CO2: Proficiency in Solving Conduction Problems: Students will exhibit proficiency in solving the general differential equation of conduction													
	p	proficiency in solving the general differential equation of conduction,													
	p	particularly in one-dimensional steady-state scenarios through various													
	g	geometries, employing the electrical analogy for effective problem-solving.													
	0	CO3: Competence in Convection Analysis: Graduates will showcase													
	c	competence in analysing convection phenomena, understanding, and applying													
	N	Newton's law of cooling, determining heat transfer coefficients through													
	d	imen	siona	l ana	lysis,	and	emplo	oying	non-	dimen	sional 1	number	rs and	l emp	irical
	r	relationships in both free and forced convection scenarios.													
	0	CO4: Comprehensive Understanding of Radiation Principles: Students													
	W	vill d	emor	istrat	e a o	comp	rehei	nsive	und	erstand	ling of	radia	tion	princ	iples,
	iı	nclud	ing c	oncep	ots lik	te abs	sorpti	ivity,	refle	ctivity,	and tra	ansmis	sivity	v, and	their
	a	pplic	ation	in r	eal-w	orld	scen	arios	invo	olving	radiatio	on exc	hang	e bet	ween
	S	urfac	es.												
	0	CO5:	App	olied	Kno	owled	lge	in H	leat	Excha	nger	Analy	sis a	ind	Mass
	T	rans	fer:	Grad	uates	wil	l app	oly h	eat t	ransfer	princ	iples t	o an	alyse	heat
	e	xchai	ngers	, cons	sideri	ng fa	ctors	like	foulin	ng, log	mean to	empera	ture	differ	ence,
	a	nd h	eat e	xchai	nger	perfo	ormai	nce.	Addit	tionally	, they	will o	demo	nstra	te an
	u	nders	tandi	ng o	f stea	ndy-s	tate r	nolec	cular	diffusi	on in f	luids,	Fick's	s law	, and
	n	iass t	ransf	er co	effici	ents,	apply	ying t	his k	nowled	lge to r	eal-wo	orld so	cenar	ios in
	h	eat ex	cchar	iger d	lesigr	1 and	mass	s tran	sfer p	process	es.				
Mapping	betw	een (Cos, I	POs a	nd P	SOs							1		
CO							PO	T	T					PSO	_
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course Code	e	Math (E)-1.2.1
Course Title	9	Engineering Mathematics-II
Course Cred	lit	3(2+1)
Objectives	1.	This course is designed to cover topics such as Differential equation,
of Course		Complex Analysis, Fourier series and Partial differential equation.
	1)	Apply various techniques in solving differential equations.
	2)	The Fourier Series finds its application in agricultural engineering for
		measuring the acceleration of its vehicles, gauging distance covered, and
		estimating fuel consumption.
	3)	Partial differential equations are used to model many physical phenomena,
		including fluid dynamics, heat transfer, and structural mechanics
Course	Or	dinary differential equations: Exact and Bernoulli's differential
Content	equ	ations, equations reducible to exact form by integrating factors, equations
	of	first order and higher degree, Clairaut's equation, Differential equations of
	hig	her orders, methods of finding complementary functions and Particular
	inte	egrals, method of variation of parameters, Cauchy's and Legendre's linear
	equ	ations, simultaneous linear differential equations with constant
	coe	efficients, series solution techniques, Bessel's and Legendre's differential
	equ	ations. Functions of a Functions of a Complex Variable: Limit,

CO4 CO5

	con	ontinuity and derivative of complex functions, analytic function, Cauchy- eimann equations, conjugate functions, Harmonic functions.													
	Rei	iman	n eq	uatio	ons, c	onju	gate f	functi	ons, i	Harmo	onic fui	nctions.			
	For	uriei	r ser	ies:]	Infini	te sei	ries a	nd its	conv	rgen	ce, peri	iodic fu	nctio	ns, F	ourier
	ser	ies, 1	Eule	er's f	ormu	ılae,	Diric	chlet's	s con	dition	is, func	ctions h	avin	g arb	oitrary
	per	iod,	ever	1 and	odd	funct	tions	, half	range	e serie	s, Harn	nonic ai	nalys	is.	
	Par	rtial	diff	feren	tial	equa	tions	: For	mati	on of	partial	differe	ntial	equa	tions,
	Lag	grang	ge's	linea	ır equ	iatioi	n, Hi	gher (order	linear	r partia	l differe	entia	l equ	ations
	wit	h co	nsta	nt co	effici	ents,	solut	tion o	f non	-linea	r partia	l differe	ential	equa	tions,
	Cha	Charpit's method, application of partial differential equations (one													
	din	imensional wave and heat flow equations, two dimensional steady state heat													
	flov	w eq	uatio	on (L	apla	ce eq	uatio	n).							
Reference	s Na	Varayan Shanti. 2004. A Text Book of Matrices. S. Chand and Co. Ltd. New													
	Del	Delhi. Grewal B S. 2004. Higher Engineering Mathematics. Khanna													
	Puł	olish	ers I	Delhi	•										
	Rai	mana	a B V	V. 20	08. E	ngine	eerin	g Mat	hema	atics. 7	Fata M	cGraw-1	Hill.	New	Delhi
Course	At	the e	end o	of the	cour	rse, le	earne	rs wil	l be a	able					
Outcomes	CO)1: A	Appl	y var	ious	techn	ique	s in so	olvin	g diffe	erential	equation	ons.		
	CO)2: A	Analy	ytic f	uncti	ons,	C-R	equat	ions a	and ha	rmonic	e functio	on.		
	CO)3: to	o apj	ply v	ariou	s tec	hniqu	ies to	solve	e fouri	er serie	es.			
	CO)4: t	to ap	ply v	ariou	is tec	hniq	ues ir	ı solv	ing pa	artial di	fferenti	al eq	uatio	ns.
Mapping l	oetwee	n Co	os, P	Os a	nd P	SOs									
CO							PO							PSC)
	1 2	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course Code	e AS(E)-1.2.2
Course Title	Environmental Science and Disaster Management
Course Cred	lit 3(2+1)
Objectives	1. Understand and evaluate the global scale of environmental problems;
of Course	and. Reflect critically on their roles, responsibilities, and identities as
	citizens.
	2. To learn how the natural world works, to understand how humans
	interact with the environment, and to find ways to deal with
	environmental problems and live more sustainably.
	3. Introduce the risk of disasters caused by human error, deliberate destru
	and building or equipment failures.
	4. Prevent environmental impacts generated by an organization's
	activities, services or products.
	5. Introducing Disaster Management in the curriculum will help the
	youth understand how to anticipate, absorb and adapt to such events.
~	6. To inculcate four R's- Reduction, readiness, response and recovery.
Course	Theory: Environmental Studies: Scope and importance. Natural Resou
Content	rces: Renewable and non- renewable resources Natural resources and
	associated problems. a) Forest resources: Use and over- exploitation,
	deforestation, case studies. Timber extraction, mining, dams and their effects
	on forest and tribal people. b) Water resources: Use and over-utilization of
	surface and ground water, floods, drought, conflicts over water, dams-
	benefits and problems. c) Mineral resources: Use and exploitation,
	environmental effects of extracting and using mineral resources, case
	studies. d) Food resources: World food problems, changes caused by
	agriculture and overgrazing, effects of modern agriculture, fertilizer-
	pesticide problems, water logging, salinity, case studies. e) Energy

Growing energy needs, renewable and non-renewable energy resources: sources, use of alternate energy sources. Case studies. f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles. Ecosystems: Concept, Structure, function, Producers, consumers, decomposers, Energy flow, ecological succession, food chains, food webs, ecological pyramids. Introduction, types, characteristic features, structure and function of the forest, grassland, desert and aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries). Biodiversity and its conservation:- Int roduction, definition, genetic, species & ecosystem diversity and biogeographical classification of India. Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity at global, National and local levels, India as a megadiversity nation. Hot-sports of biodiversity. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India. Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. Environmental Pollution: definition, cause, effects and control measures of a. Air pollution b. Water pollution c. Soil pollution d. Marine pollution e. Noise pollution f. Thermal pollution g. Nuclear hazards. Solid Waste Management: causes, effects and control measures of urban and industrial wastes. Role of an individual in prevention of pollution. Pollution case studies. Social Issues and the Environment from Unsustainable to Sustainable development, Urban problems related to energy. Water conservation, rain water harvesting, watershed management. Environmental ethics: Issues and possible solutions, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Wasteland reclamation. Consumerism and dies. waste products. Environment Protection Act. Air (Prevention and Control of Pollution) Act. Water (Prevention and control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Issues involved in enforcement of environmental legislation. Public awareness. Human Population and the Environment: population growth, variation among nations, population explosion, Family Welfare Programme. Environment and human health: Human Rights, Value Education, HIV/AIDS. Women and Child Welfare. Role of Information Technology in Environment and human health.

Disaster Management:

Natural Disasters and nature of natural disasters, their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, Heat and cold waves, Climatic change: global warming, Sea level rise, ozone depletion. Man Made Disasters- Nuclear disasters, chemical disasters, biological disasters, building fire, coal fire, forest fire, oil fire, air pollution, water pollution, deforestation, industrial waste water pollution, road accidents, rail accidents, air accidents, sea accidents. Disaster Management- Effect to migrate natural disaster at national and global levels. International strategy for disaster reduction. Concept of disaster management, national disaster management framework; financial arrangements; role of NGOs, community-based organizations and media. Central, state, district and local administration; Armed forces in disaster response; Disaster response; Police and other organizations

Practicals

Case Studies and Field work. Visit to a local area to docume nt environmental assets river/forest/grassland/hill/mountain, Visit to a local polluted site-Urban/ Rural/ Industrial/ Agricultural, study of common plants, insects, birds and study of simple ecosystems-pond, river, hill slopes, etc. Expected impact of climate change on agricultural production and water

				3.4.4		C (т		•	C 1'	. 1		D'		
		resou	rces,	M1t1	gatio	n Str	ategi	es, E	cono	mics o	of clim	ate cha	ange.	Disa	ster	
		Mana	igeme	ent in	trodu	iction	i, Nat	tural	and N	1anma	ide					
		Disas	ter S	Studi	es, I	nforr	natic	s for	Dis	aster	Manag	gement,	Qu	antita	tive	
		Tech	nique	s for	Disa	aster	Mana	agem	ent E	Enviror	nmenta	l Impa	ct As	sessn	nent	
		(EIA)) ar	nd l	Disas	ter	Man	agem	ent	Disas	ster N	/Ianage	ment	Po	licy	
		Ènvir	onmo	ental	Mod	elling	Γ.	U				U			2	
Reference	2	Rhari	icha	Fra	ch	2005	<u>,.</u> Те	vt l	Rook	of	Enviro	nmenta	1 St	udies	for	
iterer ence.		Unde	rorad	luate		2005	. IX Univ	ercity	y Gra	nts Co	ommiss	ion U	niver	city F	Press	
		Unuc	raha	1	Cou	505.	Ulliv	cisity	Ora		51111155	51011, U	mvci	Sity I	1035,	
		пуце	rabac	1. . D	200	<u>а</u> т	. 1			г .				т 1		
		Sharr	na J	Ρ.	200	3. II	itrod	uction	1 to	Envi	ronme	nt Scie	ence.	Lak	shmi	
		Publi	catio	ns.												
		Chary	y Ma	noha	r and	l Jaya	a Rai	n Re	ddy.	2004.	Princi	ples of	Envi	ironm	ental	
		Studi	es. B	S Puł	olishe	ers, H	[yder	abad.								
		Kaul	Kaul S N, Ashuthosh Gautam. 2002. Water and Waste Water Analysis.													
		Days	Days Publishing House, Delhi. Gupta P K. 2004. Methods in													
		Envir	Environmental Analysis – Water. Soil and Air. Agro bios, Jodhpur.													
		Climate change.1995: Adaptation and mitigation of climate change-														
		Scien	Scientific Technical Analysis Cambridge University Press, Cambridge.													
		Sharma, R.K. & Sharma, G. 2005. Natural Disaster. APH Publishing														
		Corporation, New Delhi.														
		Husain Majid. 2013. Environment and Ecology: Biodiversity, Climate														
		Husain Majid. 2013. Environment and Ecology: Biodiversity, Climate Change and Disaster Management														
		Change and Disaster Management.														
0				0K		1		• •	1.1	1.1						
Course	P	t the	end	of the	coui	rse, le	earne	rs wil	I be a	able						
Outcomes		COI	: To s	solve	envii	conm	ental	issue	s in a	in inclu	usive m	nanner				
		CO ₂	: Den	nonst	rate r	naste	ry of	core	ecolo	gical a	and phy	sical sc	cience	e conc	epts	
		and n	netho	ds as	they	perta	ain to	envi	ronm	ental p	problen	n-solvir	ıg.			
		CO3	Re:	cogn	ize a	and	integ	rate	the	intern	ational	, cross	s-cult	ural,	and	
		transe	discip	olinar	y na	ature	of	envir	onme	ental	problei	ns in	anal	yses	and	
		soluti	ons.													
		CO4	Ap	precia	ate t	he e	thica	l, cro	oss-cu	ltural	, and	historio	cal c	ontex	t of	
	e	nviro	nmer	ital is	sues	and t	he lii	iks b	etwee	n hum	an and	natura	l syst	ems.		
	C	205:	Тос	compi	ehen	d ab	out c	auses	s. im	pact.	distribu	tion ar	nd m	appin	g of	
	d	isaste	ers in	India	1.				,	F ,					0	
Manning l	netw	een (los I	POs a	nd P	SOs										
				050	ing I	005	PO							PSU		
CO	1	2	2	4	5	6	7	0	0	10	11	12	1	150	2	
<u>CO1</u>	1	4	3		3	U	/	0	9	10	11	14	1	4	3	
								-								
CO2																
CO3																
CO4																
L CO5																

Course Code	AS(E)-1.2.3	
Course Title	Entrepreneurship Development and Business Management	
Course Cred	$\frac{1}{3(2+1)}$	
Objective	1 To develop and strengthen the entrepreneurial quality and motivation	of
of Course	learners	01
of Course	 To impart the entrepreneurial skills and traits essential to become success 	ful
	2. To impart the entrepreneurial skins and traits essential to become success	Jui
	3 To apply the principles and theories of entrepreneurship and management	t in
	5. To apply the principles and theories of entrepreneursing and management technology oriented businesses to empower the learners to run a Technol	
	business afficiently and affectively	Jgy
Course	Theory:	
Course	Incory: Entropy provide management Management functions planning Organizin	~
Content	Entrepreneursmp, management – Management functions – planning- Organizm	g -
	Directing – motivation – ordering – leading – supervision-Communication and	
	control – Capital – Financial management – importance of financial statemen	ts
	– balance sheet – profit and loss statement, Analysis of financial statements –	
	liquidity ratios – leverage ratios, Coverage ratios – turnover ratios – profitability	y
	ratios, Agro- based industries – Project – project cycle – Project appraisal and	
	evaluation techniques - undiscounted measures - payback period - proceeds pe	r
	rupee of outlay, Discounted measures - Net Present Value (NPV) - Benefit-Con-	st
	Ratio (BCR) – Internal Rate of Return (IRR) – Net benefit investment ratio (N/	′ K
	ratio) – sensitivity analysis-Importance of agribusiness in Indian economy	
	International trade-WTO agreements – Provisions related to agreements in	
	agricultural and food commodities. Agreements on agriculture (AOA) –	
	Domestic supply, market access, export subsidies agreements on sanitary and	
	phyto- sanitary (SPS) measures. Trade related intellectual property rights	
	(TRIPS) Development (ED): Concept of entrepreneur and entrepreneurship	
	(TKH 5). Development (LD). Concept of entrepreneur and entrepreneurship	d
	Assessing overall business environment in indian economy– Entrepreneuriar an	u
	manageriai characteristics- Entrepreneurship development Programmes (EDP)-	
	Generation incubation and commercialization of ideas and innovations-	
	Motivation and entrepreneurship development- Globalization and the emerging	_
	business entrepreneurial environment- Managing an enterprise: Importance o	f
	planning, budgeting, monitoring evaluation and follow-up managing	
	competition. Role of ED in economic development of a country- Overview of	
	Indian social, political systems and their implications for decision making by	
	individual entrepreneurs- Economic system and its implications for decision	
	making by individual entrepreneurs- Social responsibility of business. Morals a	nd
	ethics in enterprise management- SWOT analysis- Government schemes and	
	incentives for promotion of entrepreneurship. Government policy on small and	
	medium enterprises (SMEs)/SSIs/MSME sectors- Venture capital (VC) contrac	rt
	farming (CF) and joint ventures (IV) nublic-private partnerships (PPP)-	
	Overview of agricultural engineering industry characteristics of Indian farm	
	machinery industry	
	Practical.	
	Tracucal.	
	analysis Analysis of financial statements (Balance Sheet Profit loss statements)	(nt)
	Compounding and discounting Break-even analysis Visit to agro-based industrie	n().
	U Visit to agro-based industries – II Study of Agro-industries Developm	ont
	$C_{\text{ornoration}}$ Ratio analysis $-I$ Ratio analysis $-II$ Application of project approximately Δ	isal
	technique – I(Undiscounted measures) Application of project appraisal technique	nne
	- II(Discounted Measures) Formulation of project feasibility reports $-$ Fe	1 ^{uc} irm
	Machinery Project proposals as entrepreneur – individual and group - Presentat	ion
	of project proposals in the class	.011
References	Harsh S.B. Conner U.I. and Schwab G.D. 1981 Management of the Farm	
MUICI CHUES.	Business Prentice Hall Inc. New Jersev	
	Joseph, L. Massie, 1995, Essentials of Management Prentice Hall of India Pvt	
	Ltd., New Delhi.	

		Omri	Raw	lins, l	N. 198	30. Int	roduc	ction t	o Agr	ibusine	ess. Pre	ntice H	all Inc	c., Ne	W
		Jerse	у												
		Gitte	nger	Price,	J. 198	39. Ec	onon	nic Ar	nalysis	s of Ag	ricultur	al Proje	ects. J	ohn	
		Hopk	tins U	Jniver	sity, F	Press,	Lond	on.							
		Thon	nas W	Zim/	mer a	nd No	rman	M Sc	carbor	ough. 1	996. E	ntrepre	neurs	hip.	
		Prent	ice-H	Iall, N	lew Je	rsey.	Mark	J Do	llinge	r. 1999	. Entrej	preneur	ship S	Strateg	gies
		and F	Resou	rces. l	Prenti	ce-Ha	ıll, Uj	pper S	addal	Rover	, New J	fersey.			
		Khan	ka S	S. 199	99. Er	trepre	eneur	ial De	velop	ment. S	S. Chan	d and C	Co. Ne	ew De	lhi.
	Ν	Mohanty S K. 2007. Fundamentals of Entrepreneurship. Prentice Hall India Ltd.,													
	1	New Delhi.													
Course	I	At the end of the course, learners will be able													
Outcomes	0	CO1: Learn the basics of Entrepreneurship													
	0	CO2 : Understand the business ownership patterns and environment													
	0	C O3 :	Unde	rstand	l the J	ob op	portu	nities	in Inc	lustries	relatir	ig to Te	chnop	preneu	ırship
	0	C O4 :	Learr	1 abou	it appl	licatio	ons of	tehno	prene	urship	and su	ccessful	l tech	nopre	neurs
	(C O5 :	Acqu	aint w	vith th	e rece	ent an	d eme	erging	trends	in entr	eprenet	ırship		
Mapping l	betw	een (Cos, I	POs a	and F	SOs									
СО							PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Code	C.E.1.2.4
Course Title	Fluid Mechanics and Open Channel Hydraulics
Course Cred	it 3(2+1)
Objectives	1. Grasp the fundamental principles governing fluid behavior, encompassing
of Course	pressure, buoyancy, fluid motion, and dynamics of flow.
	2. Understand various flow types, fluid forces on surfaces, and factors
	influencing fluid motion in pipes and open channels.
	3. Comprehend the significance of dimensional analysis, similitude, and the
	basics of fluid machinery.
	4. Gain practical skills in utilizing instruments for pressure measurement and
	verifying fluid mechanics principles through experimental setups.
	5. Apply theoretical knowledge to practical scenarios, evaluating coefficients,
	forces, efficiencies, and performance of hydraulic machinery.
Course	Theory:
Content	Properties of fluids: Ideal and real fluid. Pressure and its measurement,
	Pascal's law, pressure forces on plane and curved surfaces, centre of pressure,
	buoyancy, meta centre and meta centric height, condition of floatation and
	stability of submerged and floating bodies; Kinematics of fluid flow:
	Lagrangian and Eulerian description of fluid motion, continuity equation, path
	lines, streak lines and stream lines, stream function, velocity potential and
	flow net. Types of fluid flow, translation, rotation, circulation and vorticity,
	Vortex motion; Dynamics of fluid flow, Bernoulli's theorem, venturimeter,
	orifice meter and nozzle, siphon; Laminar flow: Stress strain relationships,
	flow between infinite parallel plates both plates fixed, one plate moving,
	discharge, average velocity; Laminar and turbulent flow in pipes, general
	equation for head loss Darcy, Equation, Moody's diagram, Minor and major
	hydraulic losses through pipes and fittings, flow through network of pipes,
	hydraulic gradient and energy gradient; Flow through orifices (Measurement
	of Discharge, Measurement of ime), Flow through Mouthpieces, Flow over
	Notches, Flow over weirs, Chezy's formula for loss of head in pipes, Flow
	through simple and compound pipes, Open channel design and hydraulics:

	(Chezy	y's fo	rmul	a, Ba	azin's	s for	mula	, Kut	tter's l	Mannir	g's for	mula	, Vel	ocity
	ä	and P	ressu	re pro	ofiles	in op	en ch	nanne	ls, Hy	ydraulio	c jump;	Dimer	nsiona	al ana	lysis
	á	and si	imilit	ude:	Rayle	eigh's	s met	hod a	ind B	ucking	ham's	`Pi' the	eorem	i, typ	es of
	5	simila	arities	s, din	nensi	onal	analy	ysis,	dime	nsionle	ss nun	bers.	[ntroc	luctio	on to
	t	fluid	mach	inery	•										
]	Pract	ical	•											
	S	Study	ofma	anom	eters	and p	oressu	ire ga	uges;	Verifi	cation o	of Bern	oulli'	s theo	orem;
	D	etern	ninati	on of	f coet	fficie	nt of	discl	narge	of ven	turi-m	eter and	d orif	fice n	neter;
	D	etern	ninati	on of	coef	ficien	t of f	rictio	n in p	ipeline	; Deter	minatio	on of	coeffi	icient
	0	f disc	harge	e for	rectai	ngula	r and	trian	gular	notch;	Deter	ninatio	n of	coeffi	icient
	0	f discharge, coefficient of velocity and coefficient of contraction for flow													
	th	rough orifice; Determination of coefficient of discharge for mouth piece;													
	Ν	leasu	reme	nt of	force	e exe	rted b	by wa	ater je	ets on f	flat and	l hemis	pheri	ical v	anes;
	D	etern	ninati	on of	meta	a-cen	tric h	eight	; Dete	erminat	tion of	efficier	icy of	f hydı	raulic
	ra	ım; P	erfor	manc	e eva	aluati	on of	f Pelt	on ar	nd Fran	ncis tur	bine; S	tudy	of cu	ırrent
	m	neter;	Velo	city o	listril	oution	n in c	pen o	chann	els and	1 deteri	ninatio	n of]	Mann	ing's
	co	oeffic	ient o	of rug	gosity			-							-
References	•	Su	ndara	jan V	200	2. En	ginee	ering	Mech	nanics a	and Dy	namics	. Tata	a Mc	Graw
		Hil	l Pub	olishii	ng Co). Ltd	., Ne	w De	lhi.						
	•	enk	xo S a	and Y	oung	g D H	200	3. En	ginee	ring M	echani	cs. Mc	Graw	Hill	Book
		Co., New Delhi.													
	•	Pra	sad I	B 20	04. A	Applie	ed M	echar	ics. F	Khanna	Publis	hers, N	lew D	elhi.	
	•	Pra	sad 1	Б 2	004.	Appl	ied N	Mecha	anics	and St	trength	of Ma	terial	s. Kł	nanna
		Pul	blishe	ers, N	Jew 1	Delhi	. Bar	isal H	RK2	2005. <i>A</i>	A Text	Book	of E	ngine	ering
		Me	chan	ics. L	axmi	i Publ	lisher	s, Ne	w De	elhi				U	U
Course	A	t the	end o	of the	cour	se, le	arner	s will	be a	ble					
Outcomes		1.	Mas	tery o	of fur	Idame	ental	fluid	princ	iples fo	or analy	zing p	oressu	ire, fo	orces,
			and	fluid	moti	on.			-	-	-				
		2.	Con	ipeter	ncy ir	n asse	ssing	diffe	erent f	low ty	pes and	dynam	ics ir	n pipe	s and
			oper	ı chai	nnels										
		3.	App	licati	on of	dim	ensio	nal a	nalys	is and	similitu	ide in f	luid	mech	anics
			prob	lem-	solviı	ng.									
		4.	Prof	icien	cy in	util	izing	inst	rumer	nts for	press	ure me	asure	ement	and
			verif	fying	fluid	mecl	hanic	s the	ories	through	n exper	iments.			
		5.	Abil	ity t	o ev	valuat	te co	peffic	ients	and	perform	nance	para	meter	s of
			hydr	aulic	macl	hiner	y, bri	dging	theo	ry with	practic	al appl	icatio	ons in	fluid
			mec	hanic	s.										
Mapping b	etwo	een C	cos, P	Os a	nd P	SOs									
CO			-				<u>PO</u>	-	-		.			PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
<u>CO2</u>					ļ										
<u>CO3</u>															
<u>CO4</u>															
CO5			1	1				1	1						

Course Code	e	C.E.1.2.5
Course Title	,	Strength of Materials
Course Cred	lit	2(1+1)
Objectives		1. Master methods for analyzing slope and deflection of beams, including
of Course		integration techniques and moment area theorems.
		2. Understand the behavior and analysis of columns, struts, and different
		types of connections like riveted and welded connections.
		3. Grasp the stability principles and analysis techniques for masonry dams.
		4. Learn advanced beam analysis methods, including statically
		analysis using various methods
		5 Apply theoretical knowledge to practical scenarios, evaluating structural
		stability and behavior of different beam configurations
Course	Th	
Content	Slo	one and deflection of beams using integration techniques moment area
	the	orems and conjugate beam method. Columns and Struts. Riveted and welded
	cor	nections. Stability of masonry dams. Analysis of statically intermediate
	bea	ums. Propped beams. Fixed and continuous beam analysis using
	sup	perposition, three moment equation and moment distribution methods.
	Pra	actical
	То	perform the tension test on metal specimen (M.S., C.I.), to observe the
	beł	navior of materials under load, to calculate the value of E, ultimate stress,
	per	missible stress, percentage elongation etc. and to study its fracture; To
	per	form the compression test on; Concrete cylinders & cubes, C.I., M.S. &
	WO	bod specimens and to determine various physical and mechanical properties;
	10 Dlo	in concrete beams & B.C.C. beam and to determine the verious physical and
	F la	chanical properties: To determine Voung's modulus of elasticity of heam
	wit	h the help of deflection produced at centre due to loads placed at centre
	&	quarter points: To study the behaviour of materials (G.I. pipes, M.S.,
	C.I)under torsion and to evaluate various elastic constants; To study load
	def	lection and other physical properties of closely coiled helical spring in
	ten	sion and compression; To perform the Rockwell, Vicker's and Brinell's
	Ha	rdness tests on the given specimens; To perform the Drop Hammer Test, Izod
	Tes	st and Charpay's impact tests on the given specimens; To determine
	cor	npressive & tensile strength of cement after making cubes and briquettes;
	То	measure workability of concrete (slump test, compaction factor test); To
	det	ermine voids ratio & bulk density of cement, fine aggregates and coarse
	agg	gregates; To determine fatigue strength of a given specimen; To write detail
	rep	on emphasizing engineering importance of performing tension,
References		• Khurmi P.S. 2001 Strength of Materials S. Chand & Co. Ltd. Now
References		• Khunni K.S. 2001. Strength of Materials S. Chand & Co., Etd., New Delbi
		 Junarkar S B 2001 Mechanics of Structures (Vo-I) Choratar Publishing
		House. Anand.
		• Ramamrutham S. 2003. Strengths of Materials. Dhanpat Rai and Sons.
		Nai Sarak. New Delhi.
Course	At	the end of the course, learners will be able
Outcomes	CC	1: Proficiency in analyzing beam deflection and slope using integration,
	mo	ment area theorems, and conjugate beam methods.
	CC	2: Competency in analyzing columns, struts, and various connections in
	stru	actural systems.
	CC	3: Understanding of stability principles and analysis methods for masonry
	dar	ns.
	CO	4: Mastery of advanced beam analysis techniques for various beam
	cor	ingurations.

CO5: Application of theoretical knowledge to assess structural stability and behavior in real world scenarios.

Mapping	Mapping between Cos, POs and PSOs														
CO							PO						PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Cod	ME-1.2.6	
Course Title	Workshop Technology and Practices	
Course Cree	it 1+2	
Objectives	1. To familiarize students with various carpentry tools, types of wood, and the	ir
of Course	characteristics.	
	2. Introduce students to the tools and operations in a smithy, covering the basic	cs
	of metalworking and forging processes.	
	3. To introduce welding, types of welding, oxyacetylene gas welding, flam	e
	types, welding techniques, and equipment.	
	4. To equip students with knowledge about classification, constructional details	s,
	main accessories, and attachments of a lathe machine.	
~	5. To develop understanding Shapers, Drilling Machines, and Milling Machines	s.
Course	Introduction to various carpentry tools, materials, types of wood and their	r
Content	characteristics and Processes or operations in wood working; Introduction to)
	Smithy tools and operations; Introduction to welding, types of welding	,
	Oxyacetylene gas weiding, types of flames, weiding techniques and equipment	•
	Principle of arc weiding, equipment, and tools. Casting processes	; ,
	ottachments Main operations and tools used on centre lathes. Types of shapers	1
	Constructional details of standard shaper. Work holding devices shaper tool	, c
	and main operations. Types of drilling machines. Constructional details of nillar	s r
	types and radial drilling machines. Work holding and tool holding devices	L
	Main operations Twist drills drill angles and sizes Types and classification	•
	Constructional details and principles of operation of column and knee type	
	universal milling machines. Plain milling cutter. Main operations on milling	<u>,</u>
	machine.	>
References	1. Workshop Technology Vol. I & II, By: S.K. Hajra Chaudhary	
	2. Workshop Technology, By: Chapman	
	3. Workshop Technology, By: S.K. Gupta	
	4. Manufacturing Technology, By: S. Dalela	
Course	At the end of the course, learners will be able	
Outcomes	CO1: Proficiency in Carpentry Techniques: Graduates will demonstrate	e
	proficiency in using various carpentry tools, understanding different wood type	S
	and their characteristics, and applying processes and operations in woodworking	z,
	ensuring the ability to undertake carpentry tasks with precision.	
	CO2: Competence in Smithy Operations: Students will exhibit competence i	n
	using smithy tools and performing basic metalworking operations, acquiring th	e
	skills needed for forging and shaping metals in a smithy environment.	
	CO3: Foundational Knowledge in Welding: Graduates will posses	SS
	foundational knowledge in welding, covering various welding types	s,
	oxyacetylene gas welding, flame types, and arc welding principles, enabling ther	n
	to undertake basic welding tasks and comprehend welding processes.	

CO4: Effective Operation of Lathe Machines: Students will demonstrate effective operation of centre lathes, including knowledge of their classification, constructional details, accessories, and attachments. They will also showcase proficiency in using main operations and tools associated with centre lathes. **CO5: Understanding of Shapers, Drilling Machines, and Milling Machines:** Graduates will exhibit a comprehensive understanding of shapers, drilling machines, and milling machines, including their constructional details, work holding devices, tool holding devices, and main operations. This knowledge prepares them for a range of machining tasks in manufacturing and fabrication settings.

Mapping	betw	een (Cos, P	Os a	nd PS	SOs									
CO							PO						PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Code	e ME 1.2.7
Course Title	Theory of Machines
Course	2 (2+0)
Credit	
Objectives	1. To explain the principles of kinematic chain, pairs, mechanisms,
of Course	Inversion, Compute velocity and acceleration in mechanisms.
	2. To study various power transmission drives gears, gear trains, belt
	drives, chain drives, friction.
	3. To study different types of governors and classification
	4. To study balancing, classification of balancing
Course	Elements, links, pairs, kinematics chain, and mechanisms. Classification of pairs
Content	and mechanisms. Lower and higher pairs. Four bar chain, slider crank chain and
	their inversions. Determination of velocity and acceleration using graphical
	(relative velocity and acceleration) method. Instantaneous centers. Types of
	gears. Law of gearing, velocity of sliding between two teeth in mesh. Involute
	and cycloidal profile for gear teeth. Spur gear, nomenclature, interference and
	undercutting. Introduction to helical, spiral, bevel and worm
	gear. Simple, compound, reverted, and epicyclic trains. Determining velocity
	ratio by tabular method. Turning moment diagrams, coefficient of fluctuation of
	speed and energy, weight of flywheel, flywheel applications. Belt drives, types
	of drives, belt materials. Length of belt, power transmitted, velocity ratio, belt
	size for flat and V belts. Effect of centrifugal tension, creep and slip on power
	transmission, Chain drives. Types of friction, laws of dry friction. Friction of
	pivots and collars. Single disc, multiple disc, and cone clutches. Rolling friction,
	anti-friction bearings. Types of governors. Constructional details and analysis of
	Watt, Porter, Proell governors. Effect of friction, controlling force curves.
	Sensitiveness, stability, hunting, iso-chronism, power and effort of a governor.
	Static and dynamic balancing. Balancing of rotating masses in one and different
	planes.
References	Bhat Bevan Thomas. 1984. Theory of Machines. CBS Publishers and
	Distributors, Delhi.
	Ballaney P L. 1985. Theory of Machines. Khanna Publishers, 2-B Nath Market,
	Nai Sarak, New Delhi.
	Rao J S and Dukkipatti R V. 1990. Mechanisms and Machine Theory. Wiley
	astern Ltd., New Delhi.

	I ol Io	adiah	100	1 Th	a anti a	f Mo	ahani	amaa	nd Ma	ahinaa	Matro	nolite	n Poo	k Co	
		guisii	. 199	1.11			unam			cimes	. Metto	ponta	an Doc	лк C0.	
	Pvt.Lt	d., I	Netaj	11 Sut	oash M	arg, I	New	Delhi							
	Rattar	n S B	. 199	3. Th	neory o	f Ma	chine	es. Ta	ta Mc	Graw I	Hill Pub	lishi	ng Co.	. Ltd.,	
	12/4 A	Asaf A	Ali Ro	oad, I	New D	elhi.									
	Khurm	i R S	and	Gupt	a J K. 1	1994.	The	ory of	Mach	ines. E	urasia H	Publis	shing I	House	
	Pvt. L	td., R	am N	Vagar	, New	Delh	i.								
Course	At the	end	of the	e cou	rse, lea	rners	s will	be at	ole.						
Outcomes	CO1 :	To ex	xplaii	n the	princip	oles c	of kin	emati	c chai	n, pairs	, mecha	anism	ns, Coi	npute	
	veloci	velocity and acceleration in planar mechanisms. Apply the concepts of													
	kinem	kinematics in predicting motion mechanism for given application.													
	CO2	CO2 : Compute the gear terminology suitable for given application, power													
	CO2.	CO2 : Compute the gear terminology suitable for given application, power transmission and drives													
	transn	transmission and drives.													
	CO3 :	Appl	y the	cond	cept of	gove	rnor	and it	ts term	inolog	у.				
	CO4:	App	oly th	he c	oncept	s of	stati	ic an	d dyn	amic	balanci	ng fo	or dif	ferent	
	condit	ions.	-		_				-			-			
Mapping be	tween (Cos, I	POs a	and I	PSOs										
CO						PO							PSO		
	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1															
CO2															
CO3															
CO4															

Course	CSE-1.2.8
Code	
Course Title	Web Designing and Internet Applications
Course	2 (1+1)
Credit	
Objectives	1. To impart the knowledge of the Internet.
of Course	2. To impart the knowledge of the HTML
	3. To study fundamentals of JavaScript development.
	4. To design a website
Course	Theory: Basic principles in developing a web designing, Planning process,
Content	Five Golden rules of web designing, Designing navigation bar, Page design,
	Home Page Layout, Design Concept. Basics in Web Design, Brief History
	of Internet, World Wide Web, creation of a web site, Web Standards, Audience
	requirement. Introduction to JavaScript, variables & functions, Working with
	alert, confirm and prompt, Connectivity of Web pages with databases; Project
	Practical:
	FLASH: Animation concept FPS, Understanding animation for web, Flash
	interface, Working with tools, DREAM WEAVER :Exploring Dreamweaver
	Interface, Planning & Setting Web Site Structure, Working with panels,
	Understanding and switching views, Using property inspector, Formatting text,
	JAVA SCRIPT: Working with alert, confirm and prompt, Understanding loop,
	arrays, Creating rollover image, Working with operator, GIF ANIMATION:
	Learning to use FTP, Setting FTP, Uploading of site, Using Control panel, FTP
	UPLOADING SITE: Understanding gif animation interface, Knowing GIf file
	format, Creating basic web banners, Creating web banners with effects,
	Creating animated web buttons
References	 Jennifer Niederst Robbins. Developing web design latest edition.
	• Frain and Ben. Responsive Web Design with HTML5
	 Nicholas c.Zakas. Java Script for Web Developers.
	• George Q. Huang, K. L Mak. Internet Applications in Product Design and
	Manufacturing. ISBN:3540434658.

Course Outcomes		At the e CO1: to CO2: to CO3: to	nd of the have left of thave left of the have left of the have left of the have left of tha	he co know out v out v	ourse, lo vledge veb paş veb paş	earne of In ge de ge de	ers w terne veloj veloj	ill be t and pmer pmer	e able l HTI nt usi nt usi	e ML. ng HT ng Jav	ML. aScrip	t.			
Mapping	betwee	en Cos	, POs a	and]	PSOs										
СО		PO PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO 3															

Course Code	e	Ag(E)-2.3.1									
Course Title	•	Principles of Horticultural Crops and Plant Protection									
Course Cred	lit	2(1+1)									
Objective of Course	1. 2. 3.	 to expose the students on the scope of horticultural crops and floricultural crops with its improved varieties and requirements of climatic conditions To express the students to achievements of knowledge of criteria of side selection layout and planting methods with proper fertilizer management Student should be able to get knowledge on seed rate, planting time, Seed treatment for vegetable crops grown in trimming as well as all the agronomical reptiles is beginning from transplanting to harvesting and post harvest management with proper marketing 									
Course	Th	eory:									
Content	Scc and pla pla and coe irri Gai Ma Pra Judg test; Stud train cultu irrig peste	ppe of horticultural. Soil and climatic requirements for fruits, vegetables l floriculture crops, improved varieties, Criteria for site selection, layout and nting methods, nursery raising, commercial varieties/hybrids, sowing and nting times and methods, seed rate and seed treatment for vegetable crops; macro l micro propagation methods, plant growing structures, pruning and training, crop efficients, water requirements and critical stages, fertilizer application, fertigation, gation methods, harvesting, grading and packaging, post harvest practices, rden tools, management of orchard, Extraction and storage of vegetables seeds. jor pests and diseases and their management in horticulture crops. actical: ging maturity time for harvesting of crop; Study of seed viability and germination Identification and description of important fruits, flowers and vegetable crops; ly of different garden tools; Preparation of nursery bed; Practices of pruning and ing in some important fruit crops, visit to commercial greenhouse/ polyhouse; ural operations for vegetable crops (sowing, fertilizer application, mulching, ation and weed control); seed extraction techniques; identification of important s and diseases and their control.									
References	Bai Del Sar S.N Put Arj Ho AE Shar Inter	 Isal. P.C. 2008. Horticulture in India. CBS Publishers and Distributors, New Ihi. aswathy, S., T.L.Preethi, S.Balasubramanyan, J. Suresh, N.Revathy and Vatarajan. 2007. Postharvest management of Horticultural Crops. Agrobios olishers, Jodhpur. unan, G., Karthikeyan, G, Dinakaran, D. and Raguchander, T. 1999. Diseases of rticultural Crops. Publications, Coimbatore. rma Neeta and Mashkoor Alam. 1997. Postharvest diseases of Horticultural crops. 									
Course	At t	he end of the course, learners will be able									
Outcomes	CO	1: To understand the fundamental knowledge of horticultural and floricultural									
	crop CO2 horti CO3	s 2: To identify the various seats of vegetable crops and floricultural and icultural crops 3: To achieve the knowledge on various garden tools pruning and triming various e and diseases and its control in greenhouse polyhouse Orchard management etc									

Mappi	ng b	etwee	n Cos	, POs	and	PSOs									
CO				PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course Cod	e	Ag(E)-2	.3.2											
Course Title	e	Prii	ncipl	es of	Agr	onon	ny								
Course cred	lit	3(2	+ 1)												
Objective		1.	Го ех	posed	1 the	stude	ents to	the	funda	mental	knowl	edge of	f agri	cultur	e and
of Course		8	igron	omica	ıl asp	ects b	beginr	ning fi	om so	owing c	of crops	s to the	harve	sting	of the
		8	same									<i>c</i> .	c		
		2. 2	2. Stu	dent	shoul	d be	able t	o ider	ntify d	itteren	t classi	fication	of ci	cops a	nd no
		1	olotic	01 V nchir	veatn	er pa	rame	lers c	rops s	session	s tillag	ge and	SOIL	water	piant
		י ב ב		vnos	, e the	s stud	ents d	on we	ede a	nd its	control	crop r	otatic	n cro	nning
		J S	svster	n rela	v cro	poping	g as v	vell as	s appli	ication	of mai	nures ar	nd fei	tilizei	's and
		C	calcul	ation	of th	e sam	e								
Course	T	heor	y:												
Content	In	trod	uction	n and	scop	e of a	grono	my. C	Classif	ication	of crop	os, Effe	ct of o	liffere	ent
	W	weather parameters on crop growth and development. Principles of tillage, tilth													
	ar	nd its	s char	acteri	stics.	Crop	seaso	ons. N	lethod	ls, time	and de	epth of s	sowin	g of n	najor
	fi	eld c	rops.	Meth	ods a	and tir	ne of	applic	cation	of mar	ures ar	nd fertil	izers.	Orga	nic
	fa	rmir	ıg-Su	staina	ble a	gricu	lture.	Soil v	vater p	olant re	lationsl	nip, croj	p coe	fficier	its,
	W	ater	requi	remei	nt of o	crops	and c	ritical	stage	s for in	rigatior	n, weeds	s and	their	
	co	ontro	l, cro	p rota	tion,	crop	oing s	ystem	s, Rel	ay crop	ping a	nd mixe	ed cro	pping	•
	P	racti	ical:									a			
	Ide	ntiti	catioi	1 of (crops	and	their	variet	ies, se	eeds, n	nanures	s, fertili	zers	and w	/eeds;
	rei nlo	unz	er af	ractic	uon e of 1	mem Puddl	ing P	Dille	e of so	weed (control	metho	ous;	Practio	20 01
References .	Ide	entifi	catio	$\frac{1}{1}$ of c	rops	and th	neir va	rietie	s. seed	is. man	ures. fe	ertilizer	s and	weed	s:
References.	Fei	rtiliz	er app	olicati	ion m	ethod	ls; Dit	fferen	t weed	l contro	ol meth	ods; Pra	actice	of	.,
	plo	oughi	ng, P	ractic	e of I	Puddl	ing, P	ractic	e of so	owing.		-			
Course	At	the	end o	of the	cou	rse, le	earne	rs wil	ll be a	ıble					
Outcomes	CC)1 : T	o une	lersta	nd th	e fun	damei	ntal kı	nowlee	dge of a	agricult	ture and	l agro	nomic	cal
	asp	bects													
	CC)2: 1	0 1de	ntify	the s	eed of	t diffe	erent c	rops v	vs seria	ls pulse	es oil se	eds ca	ash cr	ops
		39180	le cro	ops sp ntify	the d	and Co	onain nt cho	ients e	fortil	izora or	nd mon	uro os u	vol1 or	tho	
	cal	culat	tion a	s ner	the re	anire	ment	s of di	fferen	izers ai	iu man	ure as w		suic	
	C)4 T	'o act	ieve	the k	nowle	edge o	on sus	tainab	le agric	ulture	intercro	nning	⁷ mixe	ed
	cro	ppin	g and	l integ	grated	l farm	ning s	ystem	umuo	ie ugiie	antare		pping		a
	CC	Э́5 т	'o hav	ve awa	arene	ss reg	gardin	g wee	ds and	l its con	ntrol				
Mapping be	etwee	en C	os, P	Os a	nd P	SOs									
CO							PO							PSO	
		2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Cod	le	AS(E)-2.3.3													
Course Titl	e	Cor	nmu	nicat	ion S	kills (& Pe	rsona	lity l	Develo	pment				
Course Cre	dit	2 (1	+1)												
Objectives	1.	То	impr	ove t	he c	omm	unica	tive	comp	etence	of lea	arners	by u	sing	basic
of Course		grar	nmat	ic stru	icture	es in s	uitab	le co	ntexts	5			•	•	
	2.	To de	evelo	p ana	lytica	al thi	nking	skill	s for	proble	em-solv	ing in	com	munic	cative
		conte	xts												
	3.	To he	elp le	arners	s use	langu	age e	ffecti	vely	in prof	essiona	l conte	xts		
	4.	To re	ad a	nd wi	ite de	efiniti	ons,	descr	iptio	ns, nari	rations	and es	says	on va	rious
		topic	S												
Course	Т	heor	y:												
Content	C	omm	unica	ation	Skill	s: St	ructu	ral a	nd f	unction	nal gra	mmar;	mea	ning	and
	p	roces	s of c	omm	unica	tion, v	verba	l and	non-v	verbal c	commu	nicatio	n; list	ening	and
	n	ote ta	king,	writ	ing sl	kills,	oral p	oresei	ntatio	n skills	s; field	diary a	and la	ab rec	ord;
	ir	ndexi	ng, fo	otnot	e and	l bibl	iogra	phic]	proce	dures.	Readin	g and o	comp	rehen	sion
	0	f gen	eral a	ind te	echnie	cal a	rticles	s, pro	ecis v	writing	, sumr	narizin	g, ał	ostract	ting;
	ir	ndivic	lual a	and g	roup	prese	entati	ons, i	mpro	mptu p	resenta	tion, p	ublic	speak	ting;
	G	iroup	discu	ission	. Org	ganizi	ng se	mina	rs and	l confe	rences.				
	P	racti	cal												
	Lis	stenir	ng an	d note	e taki	ng, w	riting	g skill	ls, ora	al prese	entatior	n skills	; field	diar	y and
	lat	o rec	ord;	index	king,	footi	note	and	biblio	ographi	ic proc	cedures	. Re	ading	and
	co	mpre	hensi	on of	gene	eral a	nd te	chnic	cal ar	ticles,	precis	writing	g, sur	nmari	zing,
	ab	stract	1ng; 1	ndivi	dual a	and g	roup	prese	ntatic	ons.		r 11	a 1		
References	B	alasu	bram	anıan	T. I	989. A	A Tex	t boo	k of I	Phonet	les for l	Indian S	Stude	ents. C)rient
	L	ongm	ian, M	New L	Delhi.										
	B	Balasubrmanyam M. 1985. Business Communication. Vani Educational Books,													
	N	New Delhi.													
	N	latero	p, Je	an, B	. and	Rod	Reve	ell. 19	997. 7	Felepho	oning i	n Engl	ish. (Cambi	ridge
	U	Iniver	sity	Press	, Ca	mbrid	lge. 1	Moha	n Kr	ishna	and M	eera E	Baner	jee. 1	990.
		evelo	oping	Com	muni	cation	n Skil	ls. M	acmi	llan Inc	lia Ltd.	New I	Delhi		
	K	rishn	aswa	my,.	N ar	nd Sr	irama	n,	T. 1	995. C	urrent	Englis	h for	· Coll	eges.
	N	lacm	illan .	India	Ltd.	Madra	as.					• •	•		
	N	laraya	anasw	/amy	VR	. 197	9. Sti	rengtl	nen y	our wi	riting.	Jrient	Long	man,	New
	D	elhi.							_						
	Sh	arma	RC	and K	rishn	a Mo	han.	1978.	Busi	ness Co	orrespo	ndence	e. Tata	a Mc (Graw
~	Hi	ll pu	blish	ing C	ompa	iny, N	lew L	elhi.							
Course	At	the e	nd of	the c	course	e, lear	ners	will t	e abl	e	F ., 1' '	C			_
Outcomes		J1: to 79. T		cuvel	y cor	nmun	icate	and a	irticu	iate in	Englist col atro-	i Comn	nunic		s
	the	J <u>2</u> : 1	o gai	n an	under	stand	ing o	I Das	ic gra	mmati	car stru	ctures	and t	ise the	
		э нуп Эч - т		ical	finiti	me d	Acoria	ntion	nor	rations	and acc	save on	vari	nue to	nice
		ЭЭ. 1 ЭД+ Т	o wii To rea	ad an	d int	ernrei	info	rmati	n n	resente	d in to	hles of	harte	and	other
	or	anhic	form	s all	a mu	cipiei		mau	on p		a III ta	1010s, C	marts	anu	ould
		артис 05: Т	o hav	 7e iina	lersta	nding	to w	rite r	eport	s, resea	irch nai	bers, di	ssert	ations	. etc
Mapping b	etwe	en C	os. P	Os ar	nd PS	SOs	,,			., . 0500	- • · · · Pu	, 41	22010		,
CO			,-				PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2					1										
CO3															
CO4															
CO5															

Course Cod	e	Math (E)-2.3.4
Course Title	e	Engineering Mathematics-III
Course Cree	dit	3(2+1)
Objectives	1.	This course is designed to cover topics such as Numerical analysis and
of Course		Laplace transform.
	2.	This course aims at providing the necessary basic concepts of numerical
		analysis and give procedures for solving numerically different kinds of
		problems occurring in agricultural engineering and technology.
	3.	To introduce the numerical techniques of interpolation in various intervals
		and numerical techniques of differentiation and integration which plays an
		important role in agricultural engineering and technology.
	4.	The various methods of complex analysis and Laplace transforms can be
		used for efficiently solving the problems that occur in agricultural
	E	To acquaint the knowledge of various techniques and methods of solving
	5.	ordinary differential equations through numerical methods
Course	Num	arical analysis · Finite differences, various difference operators and their
Content	relatio	onships factorial notation interpolation with equal intervals Newton's
Content	forwa	rd and backward interpolation formulae Bessel's and Stirling's central
	differ	ence interpolation formulae, interpolation with unequal intervals. Newton's
	divide	ed difference formula. Lagrange's interpolation formula: numerical
	differ	entiation, differentiation based on equal interval interpolation, first and
	secon	d order derivatives by using Newton's forward and backward, Stirling's and
	Besse	l's formulae; maxima and minima of a tabulated function, numerical
	integr	ation, numerical integration by Trapezoidal, Simpson's and Weddle's rules;
	Differ	rence equations, order of a difference equation, solution of linear difference
	equati	ion, rules for finding complimentary function and particular integral;
	nume	rical solution of ordinary differential equations by Picard's method, Taylor's
	series	method, Euler's method, modified Euler's method, Runge-Kutta method.
	Lapla	ace transforms: Definition of Laplace transform, Laplace transforms of
	eleme	entary functions, properties of Laplace transforms, inverse Laplace
	transf	orms, transforms of derivatives, integrals, transform of function multiplied
	by th,	, transform of function divided by t, convolution theorem; application of
	Lapla	ce transforms to solve ordinary differential equations and simultaneous
	functi	on periodic function
	Static	stics: Testing of Hypothesis-Level of Significance-Degrees of freedom-
	Statis	tical errors Large sample test(Z-test) Small sample test t-test(One tailed
	two ta	ailed and Paired tests). Testing of Significance through variance (F-test).
	Chi-S	quare test, contingency table, Correlation, Regression.
References	Sug	gested Readings
	Char	ndel SRS. A Hand book of Agricultural Statistics. Achal Praskasam
	Masi	ndir, Kanpur.
	Agra	wal B L. Basic Statistics. Wiley Eastern Ltd. New Age International Ltd.
	Nage	eswara Rao G. Statistics for Agricultural Sciences. BS Publications.
	Rang	gaswamy R. A Text Book of Agricultural Statistics. New Age Int.
	publ	ications Ltd.
	Gupta	a S.C. Fundamental Applied Statistics.
Course	At the	e end of the course, learners will be able
Outcomes	CO1:	Appreciate the numerical techniques of interpolation in various intervals
	and a	apply the numerical techniques of differentiation and integration for
	agricu	Iltural engineering problems.
	CO2 :	Apply the concept of testing of hypothesis for small and large samples in
	real li	fe problems.

	C bo C	CO3: Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications CO4 Laplace transform and inverse transform of simple functions, properties, unique related theorem and emplication to differential equations with exception.													
		effici	relatents.	ted th	leorer	ns an	d app	olicati	on to	differ	ential e	equatio	ns wi	th coi	istant
Mapping l	betw	een C	los, P	Os a	nd P	SOs									
СО		PO PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course Code	C.E.2.3.5
Course Title	Soil Mechanics
Course	2(1+1)
Credit	
Objectives of	1. Understand fundamental soil mechanics principles, including soil
Course	properties and stress analysis.
	2. Master seepage analysis and its practical applications in evaluating soil
	stability.
	3. Develop proficiency in analyzing shear strength through various testing
	methods.
	4. Apply theoretical knowledge to practical scenarios in compaction,
	consolidation, earth pressure analysis, and slope stability assessments.
	5. Gain practical skills in geotechnical engineering for real-world
	problem-solving.
Course	Theory
Content	Introduction of soil mechanics, field of soil mechanics, phase diagram,
	physical and index properties of soil, classification of soils, effective and
	neutral stress, elementary concept of Boussinesq and Wester guards analysis,
	new mark influence chart. Seepage Analysis; Quick condition-two
	dimensional flow- Laplace equation, Velocity potential and stream function,
	Flow net construction. Shear strength, Mohr stress circle, theoretical
	relationship between principle stress circle, theoretical relationship between
	principal stress, Mohr coulomb failure theory, effective stress principle.
	Determination of shear parameters by direct shear test, triangle test & vane
	shear test. Numerical exercise based on various types of tests. Compaction,
	composition of soils standard and modified protector test, abbot compaction
	and Jodhpur mini compaction test field compaction method and control.
	Consolidation of soil: Consolidation of soils, one dimensional consolidation
	spring analogy, Terzaghi's theory, Laboratory consolidation test, calculation
	of void ratio and coefficient of volume change, Taylor's and Casagrande's
	method, determination of coefficient of consolidation. Earth pressure: plastic
	equilibrium in soils, active and passive states, Rankine's theory of earth
	pressure, active and passive earth pressure for cohesive soils, simple numerical
	exercises. Stability of slopes: introduction to stability analysis of infinite and
	finite slopes friction circle method, l'aylor's stability number.
	Practical
	Determination of water content of soil; Determination of specific gravity of
	soil; Determination of field density of soil by core cutter method;
	Determination of field density by sand replacement method; Grain size
	analysis by sleving (Dry sleve analysis); Grain size analysis by hydrometer
	method; Determination of liquid limit by Casagrande's method; Determination
	of liquid limit by cone penetrometer and plastic limit; Determination of

		shrin	kage	limi	t; De	term	inatic	on of	pern	neabili	ty by a	constan	t hea	d me	ethod;		
		Dete	rmina	ation	of p	ermea	abilit	y by	varia	ble he	ad met	hod; D	etern	ninati	on of		
		comp	pactio	on pi	ropert	ies t	by st	andar	d pro	octor	test; D	etermir	natior	n of	shear		
		parai	neter	s by	Dire	ct sh	ear te	est; D)etern	ninatio	n of u	nconfin	ed co	ompre	essive		
		stren	gth	of so	oil; I	Deter	mina	tion	of sł	near p	aramet	ers by	Tri-	axial	test;		
		Dete	rmina	ation	of co	nsoli	datio	n proj	pertie	s of soi	ils.						
References	5	•	Pu	nmia	ιВС	C, Jai	n A	K ar	id Jai	n A F	K. 2005	5. Soil	Mec	hanic	s and		
			Foundations. Laxmi Publications (P) Ltd. New Delhi.														
		• Ranjan Gopal and Rao A S R. 1993. Basic and Applied Soil Mechanic												anics.			
		Welley Easters Ltd., New Delhi.															
		•	• Singh Alam. 1994. Soil Engineering Vol. I. CBS Publishers and														
			Distributions, Delhi.														
Course		At th	At the end of the course, learners will be able														
Outcomes		CO1 : Understand basic definitions, relationships and apply the										ne kn	e knowledge to				
		solve	e diffe	erent	geote	chnic	cal pr	oblen	ns.								
		CO2	: Ar	nalyz	e the	soi	l bel	navio	r und	ler hy	drostat	ic and	hyd	rodyi	namic		
		cond	itions	5.													
		CO3	: Ap	ply	the p	roces	s an	d pri	nciple	es of	compac	ction fo	or va	rious	field		
		situa	tions														
		CO 4	: Un	dersta	and th	e im	oorta	nce of	fsoil	investi	gation	and app	ly it i	to dif	ferent		
		type	of pr	oject	s.												
Mapping b	petwo	een C	os, P	Os ai	nd PS	SOs											
CO							PO							PSO)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																	
CO2																	
CO3																	
CO4																	

Course	C.E.2.3.6
Code	
Course Title	Design of Structure
Course	2(1+1)
Credit	
Objectives	1. Gain knowledge related to BIS code application for structural design and
of Course	analysis in steel members, connections, and trusses.
	2. Analyze and design critical elements like reinforced sections, considering
	shear, bond, and torsion.
	3. Apply design principles to create safe and efficient structural elements
	including beams, slabs, columns, foundations.
	4. Integrate structural design expertise into agricultural structures like cattle
	sheds, poultry houses, rural water supply systems, and farm fencing.
	5. Develop proficiency in diverse structural designs, incorporating agricultural
	and rural infrastructure requirements.
Course	Course Content: Theory
Content	Loads and use of BIS Codes. Design of connections. Design of structural steel
	members in tension, compression and bending. Design of steel roof truss.
	Analysis and design of singly and doubly reinforced sections, Shear, Bond and
	Torsion. Design of Flanged Beams, Slabs, Columns, Foundations, Retaining
	walls and Silos, Cattle shed, Poultry House, Rural Water Supply, Farm fencing.
	Practical
	Design and drawing of single reinforced beam, double reinforced beam, Design
	and drawing of steel roof truss; Design and drawing of one way, two way slabs,

]	Desig	n and	l drav	wing	of RO	CC bi	uildin	g; De	esign a	nd drav	wing of	Reta	ining	wall.
		lo me	easure	e wor	'kabil	ity of	cem	ent by	y slun	np test.					
References	5														
Course	4	At the	e end	of the	e cou	rse, le	earne	rs wil	l be a	ıble					
Outcomes		C O1 :	App	ly BI	S cod	les to	desig	gn var	ious s	structu	ral eler	nents a	nd co	nnect	ions.
	(CO2:	Mast	er the	e desi	gn of	steel	men	nbers,	trusse	s, and o	critical	struct	ural	
	5	sections.													
	(CO3: Engineer diverse structures like beams, slabs, columns, foundations,													
	,	walls, silos, sheds, and fencing.													
		CO4: Implement theoretical knowledge into practical solutions for rural													
	i	infrastructure, including water supply systems.													
	(CO5:	Deve	elop e	expert	tise in	ı stan	dardi	zed st	ructura	al desig	n for in	nnova	tive	
	(consti	ructio	n in a	agricu	ıltura	l and	rural	settir	ngs.	c				
Mapping b	oetwe	en C	os, P	Os aı	nd PS	SOs									
СО							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course	ME-2.3.7
Code	
Course Title	Machine Design
Course	2+0
Credit	
Objectives	1. To understand the role and significance of design in engineering.
of Course	2. To familiarize students with common engineering materials and their mechanical properties
	To provide knowledge on types of loads and stresses, theories of failure
	and the concept of factor of safety.
	4. To instruct on the design principles of various mechanical components,
	including cotter joints, knuckle joints, pinned joints, turnbuckles, and
	welded joints subjected to static loads.
	5. To enable students to use application of design principles in real world.
Course	Meaning of design, Phases of design, design considerations. Common
Content	engineering materials and their mechanical properties. Types of loads and
	stresses, theories of failure, factor of safety, selection of allowable stress. Stress
	concentration. Elementary fatigue and creep aspects. Cotter joints, knuckle joint
	and pinned joints, turnbuckle. Design of welded subjected to static loads.
	Design of threaded fasteners subjected to direct static loads, bolted joints loaded
	in shear and bolted joints subjected to eccentric loading. Design of shafts under
	torsion and combined bending and torsion. Design of keys. Design of muff,
	sleeve, and rigid flange couplings. Design of helical and leaf springs. Design of
	flat belt and V-belt drives and pulleys. Design of gears. Design of screw motion
Defenences	mechanisms like screw jack, lead screw, etc. Selection of anti-inction bearings.
References	1. Jain K K. 2015. Machine Design. Khanna Publishers, 2-B Nain Markat, Nai Sarak, Naw Dalhi
	2 Khurmi R S and Gunta I K 2014 A Text Book of Machine Design S
	2. Khurini K S and Oupla J K. 2014. A Text book of Machine Design. S. Chand & Company I td. New Delhi
Course	At the end of the course learners will be able
Outcomes	CO1: Comprehensive Design Understanding: Graduates will demonstrate a
	comprehensive understanding of design principles, including the meaning of

design, the phases involved, and key considerations, providing a solid foundation for engineering design processes. CO2: Informed Material Selection: Students will exhibit the ability to make informed decisions about material selection, considering the mechanical properties of common engineering materials, ensuring optimal choices based on the requirements of the design. CO3: Analysis of Loads and Stresses: Graduates will be proficient in analyzing loads and stresses, applying theories of failure, calculating factors of safety, and making suitable selections of allowable stress, while understanding stress concentration, fatigue, and creep aspects in materials. CO4: Competence in Mechanical Component Design: Graduates will showcase competence in designing a variety of mechanical components, including joints, fasteners, shafts, keys, couplings, springs, belt drives, pulleys, gears, brackets, levers, columns, and various motion mechanisms, applying design principles effectively. CO5: Application of Design Principles to Real-world Scenarios: Students will demonstrate the ability to apply design principles to real-world scenarios, including the selection of antifriction bearings and the design of curved beams, crane hooks, circular rings, and screw motion mechanisms. This ensures that graduates are prepared to address practical engineering challenges across a range of applications. Cos POs and PSOs Monning hotwoo

CO		PO													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																	
CO2																	
CO3																	
CO4																	
CO5																	

Course	ME 2.3.8
Code	
Course Title	Thermodynamics, Refrigeration and Air Conditioning
Course	3 (2+1)
Credit	
Objectives	1. To Explain the basic concepts and laws of thermodynamics. concept of
of Course	enthalpy and entropy in thermal systems
	2. To explain the working of Carnot Otto, Diesel & Dual cycles
	3.To Explain VCRS, VARS and refrigeration cycles.
	4.Solve problems in psychrometric processes, airconditiong, Cooling load and
	application of cold storage.
Course	Thermodynamics properties, closed and open system, flow and non-flow
Content	processes, gas laws, laws of thermodynamics, internal energy. Application of
	first law in heating and expansion of gases in non-flow processes. First law
	applied to steady flow processes. Carnot cycle, Carnot theorem. Entropy,
	physical
	Concept of entropy, change of entropy of gases in thermodynamics process.
	Otto, diesel and dual cycles.
	Principles of refrigeration, - units, terminology, production of low temperatures,
	air refrigerators working on reverse Carnot cycle and Bell Coleman cycle.
	Vapour refrigeration-mechanism, P-V,P-S,P-H diagrams,vapor compression
	cycles, dry and wet compression, super cooling and sub cooling. Vapour
	absorption
	refrigeration system. Common refrigerants and their properties. Design
	calculations for refrigeration system. Cold storage plants. Thermodynamic

	prop	properties of moist air, perfect gas relationship for approximate calculation, adiabatic saturation process, wet bulb temperature and its measurement													
	adiat	oatic	satura	tion	proc	ess,	wet	bulb	temper	rature	and it	s me	easure	ment,	
	psyc	nome	etric ch	art a	nd		•				•	• • •		T	
	its us	se, ele	ementa	ary pa	sycho	metr	ic pr	ocess.	Air co	nditior	11ng — J	princ	iples -	-Type	
	and air d	uncu	ution	all (buet d		ng, p	thode	fundar	princip nontale	of des	all Co	of con	oning, oplete	
		nditi	ioning	anu u	me u	hum	i me	are and	dobur	nidifia		olina		ipiete	
		latio	ne tvn	sysic	air c	ondi	ione	rs and	nlicati	mume.	15 - 00	onng	10au		
	Prac	tical	ns, typ	05 01		onun	.10110	a_{p}	prication	5115.					
	Tuto	rials	on the	rmod	vnam	nic ai	r cvc	eles. St	tudv ai	nd app	licatior	n of F	V an	d T S	
	chart	in re	frigera	tion.	PHO	chart	(or)	Mollie	r diagr	am in r	efriger	ation	. Num	erical	
	on a	ir ref	rigerat	tion	cycle	syst	ems,	Nume	erical of	on vap	our co	mpre	ssion	cycle	
	refrig	gerati	on sy	stem.	, Stu	dy c	of do	mestic	wate	r coole	er, Stu	dy c	of don	nestic	
	hous	ehold	l refrig	gerato	or, St	tudy	of a	bsorpti	on typ	be sola	r refri	gerati	ion sy	vstem,	
	Stud	y colo	d stora	ge fo	r frui	t and	vege	etables	, Freez	ing loa	d and t	ime (calcula	ations	
	for fo	ood m	nateria	ls, De	eterm	inati	on of	refrige	ration	param	eters us	sing r	efrige	ration	
	tutor	tutor – II, Numerical on design of air conditioning systems, Study of window air conditioner. Study on repair and maintenance of refrigeration and air													
	air c	air conditioner, Study on repair and maintenance of refrigeration and air-													
	cond	conditioning systems. Visit to chilling or ice making and cold storage plants. Bhat Kothandaraman C P Khajuria P R and Arora S C 1992 A Course in													
References	Bhat	Bhat Kothandaraman C P Khajuria P R and Arora S C. 1992. A Course in Thermodynamics and Heat Engines Dhannet Rai and Sons 1682 Nai Sarak													
	Ther	Thermodynamics and Heat Engines. Dhanpet Rai and Sons, 1682 Nai Sarak, New Delbi													
	Khur	New Delhi. Khurmi P.S. 1002 Engineering Thermodynamics, S. Chand and Co. Ltd. Dom													
	Naga	nn Ne	. 5. 19: w Del	92. E hi	ngine	zer mş	3 110	mouy	manne	5. 5 CI	ianu an). Liu.,	, Naill	
	Math	nr N		and 1	Meht	аF	S 1	992	Therm	odvnar	nics a	nd F	leat F	Power	
	Engi	neeri	ng. Dh	anna	t Rai	and	Sons	1682 I	Nai Sa	rak. Ne	ew Dell	hi.	icut i	0	
	Ballr	nev P	. L. 19	94. T	herm	nal E	ngine	ering.	Khann	a Publ	ishers.	New	Delhi	i.	
	Nag	Р́К.	1995.	Engi	neeri	ng T	herm	odynai	mics. 7	Fata M	cGraw	Hill	Publi	shing	
	Co.l	Ltd.,	12/4 A	saf A	Ali Ra	aod, I	New	Delhi.						U	
Course	At th	e enc	l of the	e cou	rse, le	earne	rs w	ill be a	ble						
Outcomes	C01	: To	Expla	in ba	isic c	once	pts a	nd law	s of th	nermod	lynami	cs, re	efriger	ation,	
	and A	Air co	onditio	ning.											
		: To	under	rstand	d the	WO	king	princ	ipals of	of vari	ous po	ower	cycle	s and	
	refrig	gerati	on cyc	eies.	miacl	on V	CDC	U AD	C	nofui ~-	notion		a		
		: 10 • Sal·	sorve 1	nume	rical	on V	lema	, v AK	S and	etric p	rocess	ycie	s. .condi	tiona	
		• 501 ing le	ad and	d ann	licati	on o	f col	d stora	Je Je	eure p	1000350	.s, all	Conul	uong,	
Mapping bet	ween (Cos. I	POs ar	nd PS	5Os			1 5101Uz	50.						
CO						PO							PSO		
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1															
CO2															
CO3															
CO4															

Course Code		EE-2.3.9									
Course Title		Electrical Machines and Power Utilization									
Course Credit	t	3 (2+1)									
Objectives of	Course	 To impart the basic knowledge about the DC, AC and Magnetic circuits. To comprehend the working of various Electrical Machines. To know about various power converters and electrical installations. 									
Course	Theory	:									
Content											

	Basic Concepts: Basic electrical quantities – specific resistance coefficient. Dc Circuits: Kirchhoff's laws – Thevenin, Superpo-	e – temperature osition theorem
	- star delta transformation. Magnetic Circuits: Electro reluctance laws of magnetic circuits determination of amp	ere-turns for
	series and parallel magnetic circuits, hysteresis and eddy	current losses.
	Dc Machines: DC Generators: Principles, operation and perfo	ormance of DC
	machine (generator and motor), EMF and torque equations, arn	nature reaction,
	commutation, excitation of DC generator and their characteristi	cs; DC Motors:
	DC motor characteristics, starting of shunt and series motor,	starters, speed
	circuits: Basics – RMS and average quantities. Three phase	e AC circuits:
	Reasons for use of three phase systems – star and delta for gene	eration and load
	- power factor - power and energy measurement various m	ethods of three
	phase power measurement; power factor, reactive and ap	pparent power,
	Concept and analysis of balanced polyphase circuits; Serie	es and parallel
	resonance; Ac Machines: Transformer: Principle of working, single phase transformer EME equation phasor diagram on	construction of
	reactance voltage regulation power and energy efficiency of	open circuit and
	short circuit tests; Poly-phase induction motor: Construction, or	peration, phasor
	diagram, effect of rotor resistance, torque equation, starting and	d speed control
	methods. Single-phase induction motor: Double field rev	olving theory,
	equivalent circuit, characteristics, phase split, shaded pole moto	ors
	To obtain load abarrataristics of d.a. shunt/series (compound	ganaratory To
	study characteristics of DC shunt/ series motors: To study d c	motor starters:
	To Perform load-test on 3 ph. induction motor & to plot tor	que V/S speed
	characteristics; To perform no-load & blocked -rotor tests on	3 ph. Induction
	motor to obtain equivalent ckt. parameters & to draw circle dia	gram; To study
	the speed control of 3 ph. induction motor by cascading of	two induction
	study star- delta starters physically and (a) to draw electric	cal connection
	diagram (b) to start the 3 ph. induction motor using it. (c)	to reverse the
	direction of 3 ph. I.M.; To start a 3-phase slip -ring induc	ction motor by
	inserting different levels of resistance in the rotor ckt. and to plo	t torque –speed
	characteristics; To perform no load & blocked –rotor test on	1 ph. induction
	double revolving field theory: To perform load test on 1 ph i	on the basis of nduction motor
	& plot torque –speed characteristics: To study power consum	ned in a three-
	phase circuit; Two lights in series controlled by one switch;	Two lights in
	parallel controlled by one switch.	
References	1. Thareja B L & Theraja AK. 2005. A text book of Electrical To	echnology. Vol.
	1 S. Chand & Company L1D., New Deini. 2 Theraia B L & Theraia AK 2005 A text book of Electrical T	echnology Vol
	II S.Chand & Company LTD., New Delhi.	cennology. voi.
	3. Vincent Del Toro. 2000. Electrical Engineering Fundamental	s. Prentice-Hall
	of India Private LTD., New Delhi. Anwani M L. 1997.	Basic Electrical
G	Engineering. Dhanpat Rai & Co.(P) LTD. New Delhi	
Course	At the end of this course students will demonstrate the ability to $CO1$. Describe the basic terminologies of DC AC circuits	
Juiconits	CO2: Define the basic concepts of Magnetic circuits and transfe	ormers.
	CO3: Predict and analyze the behavior of any circuits.	
	CO4: Identify the type of electrical machine used for required a	pplication.
	CO5: Classify various means of power conversion methodologi	es.
Monnie - L	CO6: Plan electrical wiring, earthing for house hold and comme	ercial purposes.
CO	PO	PSO
	A V	100

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Co	de			C.E.2	.4.1										
Course Tit	le]	Build	ing (Const	ructi	on ai	nd Co	ost Est	timatio	n			
Course Cre	edit			2(2+0)										
Objectives	1.	Une	dersta	und ar	nd uti	lize d	livers	e bui	lding	mater	ials effe	ectively	•		
of Course	2.	Lea	rn es	sentia	al bui	lding	com	poner	nts an	d cons	struction	n techni	ques.	•	
	3.	Ap	ply de	esign	conce	epts i	n agr	icultu	ıral ar	nd roo	f-based	structu	res.		
	4.	Dev	velop	skills	s in co	ost es	timat	tion a	nd ec	onomi	c analy	sis for c	const	ructio	n.
Course	Bι	uildin	ıg Ma	terial	s: Ro	cks, S	Stone	s, Bri	cks P	ropert	ies and	varietie	s of T	Tiles, I	Lime,
Content	Ce	emen	t, Coi	ncrete	e,										
References	Sa Bu Fii de ag to Pr int bu an ev co	 Sand. Glass, Rubber, Plastics, iron, Steel, Aluminium, Copper, Nickle. Timber. Building components: Lintels, Arches, stair cases, Different types of floors, Finishing: Damp Proofing and water proofing, Plastering, pointing, white washing and distempering – Painting, Building design, Design procedures, Technology, building construction, Types of agricultural buildings and related needs, application of design theory and practice to the conservation, sloped and flat roof buildings, construction economics: Preliminary estimates, Detailed Estimates of Buildings source of cost information, use of cost analyses for controlling design, Factors affecting building costs; cost evaluation of design and planning alternatives for building and estate development, Measurement and pricing, Economic methods for evaluating investments in buildings and building systems: cost-in-use, benefit-to- costs and savings-to-investment ratios, rate of return, net benefits, payback Punmia B.C. Ashok Kumar Jain and Arun Kumar Jain. Building Construction. Laxmi Publications (P) Itd., New Delhi. 													
		•	Sane	Y.S.	Plan	ning a	and E	Desigi	ning c	of Buil	dings.				
		•	Rang	gwala	SC.	1994	. Eng	gineer	ing N	Iateria	ls. Cha	rotar Pu	blish	ing H	louse,
			Anar	nd.											
		•	Dutta	a B.N	. 200	0. Es	timat	ing a	nd Co	osting.	UBS p	ublisher	s.		
Course	At	the o	end o	f the	cours	e, lea	rners	will	be ab	le					
Outcomes	C	01: F	Profic	iency	in se	electii	ng su	itable	cons	tructio	on mate	rials.			
	C	02: F	racti	cal kr	lowle	dge o	of bui	lding	com	ponent	ts and f	inishes.			
		J3: А Эл. г	Applic		of de	esign	princ	ciples	in va	rious s	structui	es.	4:	:	a a t a
		J4: Е 75: Е	Jolist	ive co	Jorata	anage	a for	infor	mod d	lon-ma	aking n n moki	ng in og	uctio	n proj	ects.
	en	JJ. I. deav	ours		JEISta	mannş	g 101	mon	ineu u	lecisio	111-111aKI	ing in co	msut	iction	
Manning h	etwe	en C	$\frac{0013}{05}$	Os ar	nd PS	i Os									
CO	cene		05,1	05 41		05	PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	$\frac{100}{2}$	3
CO1	-	_	•	-	-	Ŭ	-		-				-	_	
CO2															
CO3								1	1		1				
CO4									1						
CO5							1								
Course Co	de	M	E-2.4	.2		•			•						
Course Tit	le	Au	ito C.	AD A	pplio	catio	ns								
Course Cre	edit	0+	0+2												

Objectives	1. To Introduce the application of computers for design, providing students with
of Course	an overview of CAD.
	2. To study the draw and dimension tool bar in CAD, ensuring students
	understand its features and functions.
	3. To study the OSNAP, line thickness, and format tool bar functionalities in
	CAD. 4. To Provide prestice on mirror offect and error commands as well as trim
	4. To Provide practice on mirror, offset, and array commands, as well as trim,
	5 To Guide students in the drawing of 2D and 3D machine parts using draw
	tool bars, and explore CNC machine.
Course	Application of computers for design. CAD - Overview of CAD window –
Content	Explanation of various options on drawing screen. Study of draw and dimension
	tool bar. Practice on draw and dimension tool bar. Study of OSNAP, line
	thickness and format tool bar. Practice on OSNAP, line thickness and format tool
	bar. Practice on mirror, offset and array commands. Practice on trim, extend,
	chamfer and fillet commands. Practice on copy, move, scale and rotate
	commands. Drawing of 2 D- drawing using draw tool bar. Practice on creating
	boundary, region, hatch and gradient commands. Practice on Editing polyline-
	PEDIT and Explode commands. Setting of view ports for sketched drawings.
	Printing of selected view ports in various paper sizes. 2D- drawing of machine
	parts with all dimensions and allowances- Foot step bearing and knuckle joint.
	bolt and other machine parts. Practice on 3-D commands. Extrusion and loft
	Practice on 3-D commands- on sween and press pull Practice on 3-D Commands-
	revolving and joining. Demonstration on CNC machine and simple problems.
References	1. Rao P.N. 2002. CAD/CAM Principles and Applications. McGraw-Hill
	Education Pvt. Ltd., New Delhi.
	2. Sareen Kuldeep and Chandan Deep Grewal. 2010. CAD/CAM Theory
	and Practice. S.Chand & Company Ltd., New Delhi.
	3. Zeid Ibrahim. 2011. Mastering CAD/CAM with Engineering. McGraw-Hill
	Education Pvt. Ltd., New Delhi.
	4. Lee Kunwoo. 1999. Principles of CAD/CAM/CAE Systems. Addison
G	Vesley Longman, Inc.
Course	At the end of the course, learners will be able
Outcomes	utilizing CAD tools including draw and dimension tool bars OSNAP line
	thickness and format tool bars ensuring their ability to create precise and well-
	documented technical drawings.
	CO2: Effective Editing Skills: Students will exhibit effective editing skills in
	CAD, showcasing their ability to use mirror, offset, array, trim, extend, chamfer,
	fillet, copy, move, scale, and rotate commands with precision, allowing for
	efficient modification of drawings.
	CO3: Competence in 2D and 3D Drawing: Graduates will showcase
	competence in 2D drawing, including the creation of machine parts with accurate
	dimensions and allowances, as well as proficiency in 3D drawing techniques such
	as extrusion, foil, sweep, press pull, revolving, and joining.
	commands like creating boundaries regions batches gradients and editing
	polylines using PEDIT and Explode commands, demonstrating their ability to
	handle complex drawing tasks in CAD.
	CO5: Understanding of CNC Machining: Graduates will gain a foundational
	understanding of CNC machines and their applications, allowing them to
	comprehend modern manufacturing processes and the integration of CAD in
	CNC machining, preparing them for advanced roles in the field of computer-
	aided design and manufacturing.
Mapping be	tween Cos, POs and PSOs

CO		РО											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course	EE-2.4.3
Code	
Course Title	Applied Electronics and Instrumentation
Course	3 (2+1)
Credit	
Objectives	1. To understand the mechanisms of current flow in semi-conductors.
of Course	2. To familiarize on the principle of operation, capabilities and limitation
	of various advanced semiconductor devices and its practical application.
	3. To provide information on the basics of Electronic Measurements.
	4. To include specialized information needed for Analog and Digital
	5 To exploit an instrument's notential to be exerce of its limitations
Course	5. To explore an instrument's potential, to be aware of its initiations.
Content	Semiconductors n n junction V I characteristics of n n junction diode
Content	as a circuit element rectifier clipper damper voltage multiplier capacitive
	filter diode circuits for OR & AND (both positive and negative logic) bipolar
	iunction transistor: operating point. Classification (A.B & C) of amplifier.
	various biasing methods (fixed. self-potential divider). h-parameter model of
	a transistor. analysis of small signal. CE amplifier. phase shift oscillator,
	analysis of differential amplifier using transistor. Ideal OP-AMP
	characteristics. linear and non-linear applications of OP-AMP (adder.
	subtractor. integrator, active rectifier. comparator. differentiator. differential,
	instrumentation amplifier and oscillator). zener diode voltage regulator.
	transistor series regulator. current limiting. OP-AMP voltage regulators. Basic
	theorem of Boolean algebra. Combinational logic circuits (basic gates. SOP
	rule and Kmap). Binary ladder D/A converter, successive approximation A/D
	temperature velocity force and pressure using potentiometer resistance
	thennometer thermocouples Bourclen tube I VDT strain gauge and tacho-
	generator
	Practicals:
	To study V-I characteristics of p-n junction diode: To study half wave, full
	wave and bridge rectifier. To study transistor characteristics in CE
	configurations: To design and study fixed and self-bias transistor: To design
	and study potential divider bias transistor. To study a diode as clipper and
	clamper: To study a OP- AMP IC 741 as inverting and non- inverting
	amplifier: To study a OP-AMP IC 741 as differentiator and integrator to study
	a differential amplifier using two transistor: To study a OP-AMP IC 741 as
	differential amplifier: To study a zener regulator circuit: To study a OP-AMP
	IC 741 as a active rectifier: To study a OP- Δ MP IC 741 as a comparator: To
	familiarize with various types of transducers
References	1 Robert I Boyelsted Electronic Devices and Circuit Theory
INCICI CHIUES	2 Mehta V K Principles of Electronics S Chand and Co New Delhi
	3. Shaney A K. Measurement of Electronics and Electronic
	Instrumentation Khanna Publications Roy Chowdary Integrated
	Electronics. John Wiley International

		4. Ku	mar	Anan	d. D	igital	Elec	tronio	cs. A.	PHI.					
		5. Gu	ipta S	Sanjee	ev, So	ontho	sh Gi	upta.	Elect	ronic I	Devices	and Ci	ircuits	s. Dar	apath
		Rai Publications													
Course		At the end of the course, learners will be able.													
Outcomes		CO1: Demonstrate the flow of charge carriers in semiconductor and interpr										erpret			
		the V	I rela	tions	•										
		CO2:	Und	lersta	nd th	e phy	vsical	and f	uncti	onal pr	opertie	s of did	ode.		
		CO3	Cor	npare	the	prope	erties	of d	iffere	nt con	figurati	ions of	bipol	lar ju	nction
		transi	stors	•											
		CO4:	Cor	rectly	inter	rpret	the m	easu	emer	t resul	ts.				
		CO5 :	Sug	gest t	he in	strum	nent s	uitab	le for	a spec	ific app	olication	n		
Mapping l	oetwo	een C	os, P	Os a	nd P	SOs									
CO							PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Code	e	FMPE-2.4.4							
Course Title	e e e e e e e e e e e e e e e e e e e	Tractor and Automotive Engines							
Course Cred	lit	3 (2 + 1)							
Objectives	1)To get the knowledge about the sources of power available on the farm.								
of Course	2) To acquaintance with IC engine, its principle & laws, components								
	work	ing.							
	3)To ge	et technical knowledge about different systems of IC engine.							
	4) To g	et familiar about basics of engine testing.							
Course	Course	e Content: Theory							
Content	Study of	of sources of farm power -conventional & non-conventional energy							
	sources	. Classification of tractors and IC engines. Review of thermodynamic							
	principl	les of IC (CI & SI) engines and deviation from ideal cycle. General							
	energy	equation and heat balance sheet. Study of mechanical, thermal and							
	volume	tric efficiencies. Study of engine components their construction,							
	operatin	ng principles and functions. Study of engine strokes and comparison of							
	2-Stroke	e and 4-stroke engine cycles and CI and SI engines. Study of Engine							
	valve s	systems, valve mechanism, valve unning diagram, and valve clearance							
	importa	unce of air cleaning system Study of types of air cleaners and							
	nerform	hance characteristics of various air cleaners. Study of fuel supply system							
	Study o	f fuels properties of fuels calculation of air-fuel ratio Study of tests on							
	fuel for	SI and CI engines. Study of detonation and knocking in IC engines.							
	Study o	of carburetion system, carburetors and their main functional components.							
	Study o	of fuel injection system – Injection pump, their types, working principles.							
	Fuel in	jector nozzles – their types and working principle. Engine governing –							
	need of	f governors, governor types and governor characteristics. Study of							
	lubricat	ion system – need, types, functional components. Study of lubricants –							
	physica	l properties, additives and their application. Engine cooling system –							
	need, cooling methods and main functional components. Study of need and type								
	of thermostat valves. Additives in the coolant. Study of radiator efficiency. Stud								
	of ignition system of SI engines. Study of electrical system including battery								
	starting	motor, battery charging, cut-out, etc. Comparison of dynamo and							
	alternat	or. Familiarization with the basics of engine testing.							
	Practic	al							

	I	ntrodu	iction	to dif	ferent	syste	ms of	f CI e	ng	Introduction to different systems of CI engines; Engine parts and functions,							
	v	vorkin	g princ	ciples	etcVal	ve sys	stem -	- study	, c	onstru	iction	and ad	ljustmo	ents; C)il &		
	F	Fuel- determination of physical properties; Air cleaning system; Fuel supply															
	s	system of SI engine; Diesel injection system & timing; Cooling system, and fan															
	p	performance, thermostat and radiator performance evaluation: Part load															
	e	fficier	icies <i>b</i>	& gov	verning	z: Lu	bricat	ing s	vste	em &	z adju	stmen	ts; Sta	arting	and		
	e	lectric	al sys	tem;	Ignitio	n sys	stem:	Tract	or	engir	ne hea	t bala	ince a	nd en	gine		
	p	erforr	nance o	curves	s: Visit	to en	gine n	nanufa	ictu	ırer/ a	ssemb	oler/ sp	are pa	rts age	encv.		
Reference	s •	Lilie	edahl J	B and	d Other	rs. Tr	actors	and T	he	ir Pov	ver Ur	nits.	· 1 ···				
	•	Rodi	chev V	/ and	G Roc	lichev	va. Tra	actors	and	d Aut	omobi	les.					
		Math	nur MI	and]	RP Sha	arma.	A coi	irse in	In	ternal	Com	oustion	ı Engi	nes.			
		Sing	h Kirn	al. Au	tomob	ile Er	ginee	ring –	V	ol II.	com		1 21191	105.			
		Heit	ner Jos	eph. A	Automo	otive	Mech	anics :	Pr	incip	les and	l Pract	ices.				
Course	A	t the	end of	the co	urse, le	earne	rs wil	be ab	le	- I							
Outcomes		CO1 :	Able t	o sele	ect and	l use	of pi	oper	far	m soi	arce f	or doi	ng va	rious	farm		
	0	perati	ons.				F-	-r									
	(CO2: (Get in o	lepth	knowle	edge a	about	IC en	Jin	e com	noner	nts and	it's w	orking	σ.		
	C	:03: F	Become	e tech	nically	sound	l abor	it work	cin	g of d	ifferer	nt syste	ems of	IC en	gine.		
	\mathbf{C}	CO4: 1	Becom	e fami	iliar ab	out b	asics of	of eng	ine	testir	וס. וס			10 01	5		
Manning	hetw	een C	os. PO	s and	PSOs	1		01 0115		testii	-8.						
CO	PO	<u></u>	05,10	b und	1005								PSO				
00	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	-		-		U	,			10		12	-	-			
CO^2																	
CO2																	
C03									\square								
C04																	

0	
Course	PFE – 2.4.5
Code	
Course	Engineering Properties of Agricultural Produce
Title	
Course	2(1+1)
Credit	
Objectives	1. To enable the students to understand the principles and concepts of various
of Course	properties of agricultural produces
	2. To understand the physical laws governing the response of the agricultural
	produces to various physical treatments so that the machines, processes and
	handling operations can be designed for maximum efficiency and the highest
	quality of the end products.
Course	Classification and importance of engineering properties of Agricultural Produce.
Content	shape, size, roundness, sphericity, volume, density, porosity, specific gravity,
	surface area of grains fruits and vegetables. Thermal properties. Heat capacity
	Specific heat. Thermal conductivity. Thermal diffusivity. Heat of respiration:
	Coefficient of thermal expansion. Friction in agricultural materials: Static
	friction Kinetic friction rolling resistance angle of internal friction angle of
	repose, Flow of bulk granular materials, Aero dynamics of agricultural products,
	drag coefficients, terminal velocity. Rheological properties; force, deformation,
	stress, strain, elastic, plastic and viscous behaviour, Newtonian and Non-
	Newtonian liquid, Visco-elasticity, Newtonian and Non-Newtonian fluid,
	Pseudo-plastic, Dilatant, Thixotropic, Rheopectic and Bingham Plastic Foods,
	Flow curves. Electrical properties; dielectric loss factor, loss tangent, A.C.
	conductivity and dielectric constant, method of determination. Application of
	engineering properties in handling processing machines and storage structure.
References	• Mohesin, N.N. 1980. Physical Properties of Plants & Animals. Gordon &
	Breach Science Publishers, New York. Mohesin,

	•	• N.N. 1980. Thermal Properties of Foods and Agricultural Materials. Gordon &													
		Bread	h Sci	ience	Publ	ishers	s, Ne	w Yo	rk.						
	•	• Prentice, J.H. 1984. Measurement in Rheological Properties of Food Stuffs.													
		Elsevier Applied science Pub. Co. Inc. New York.													
	•	• Rao, M.A. and Rizvi, S.H., 1995. Engineering Properties of Foods. Marcel													
		Dekker Inc. New York.													
	•	• Singhal OP & Samuel DVK. 2003. Engineering Properties of Biological													
		Mate	rials.	Saroj	Prak	ashar	n.								
Course	A	At the end of the course, learners will be able													
Outcomes	С	01:	Demo	onstra	ite ki	nowle	edge	of v	ariou	s engi	neering	metho	ods to	o me	asure
	er	ginee	ering	prope	erties	like j	physi	cal, t	herma	al, rhec	logical	proper	ties a	nd qu	ıality
	co	ontrol	in ag	ricult	ural	produ	ices.								
	C	O2 : 1	Know	ledge	e of i	metho	ods to	o det	ermin	e vario	ous eng	gineerin	g pro	operti	es of
	ag	ricul	tural	produ	ices a	nd its	s phys	sical,	thern	nal and	rheolo	gical pi	oper	ties.	
	C	03: I	denti	fy, ch	noose	and	imple	emen	t appi	ropriate	e techn	iques fo	or pre	edicti	on of
	Va	rious	engi	neeri	ng pr	operti	ies.		• •			•	•		
Mapping b	etwe	en C	os, P	Os ar	nd PS	SOs									
CO			<i>.</i>				PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course Code	e SWCE-2.4.6
Course Title	Watershed Hydrology
Course Crea	lit $1(1+1)$
Objectives	• Comprehend the hydrologic cycle, including precipitation forms, rainfall
of Course	measurement techniques, and frequency analysis for point rainfall, focusing
	on mean rainfall estimation.
	• Analyze hydrological processes like interception, infiltration, and
	evaporation, exploring influencing factors, measurement methods, and
	estimation indices.
	• Evaluate runoff factors, measurement techniques, and methodologies such
	as Rational method, Cook's method, and SCS curve number method for
	estimating peak runoff rate and volume.
	• Investigate watershed geomorphology, encompassing linear, aerial, and
	relief aspects, along with stream order, drainage density, and stream
	frequency analysis.
	• Understand hydrograph components, base flow separation, unit hydrograph
	theory, synthetic hydrograph, flood estimation techniques, and flood routing
	methods, including channel and reservoir routing, considering their
G	applications and limitations.
Course	Theory:
Content	Hydrologic cycle, precipitation and its forms, rainfall measurement and
	estimation of mean fainfail, frequency analysis of point fainfail. Mass curve,
	relationship Hydrologia processes Interception infiltration factors influencing
	measurement and indices. Evaporation Estimation and measurement Punoff
	Factors affecting measurement stage - discharge rating curve estimation of peak
	runoff rate and volume Rational method Cook's method and SCS curve number
	method Geomorphology of watersheds – Linear aerial and relief aspects of
	watersheds- stream order, drainage density and stream frequency. Hydrograph -
	Components base flow separation, unit hydrograph theory. S-curve, synthetic
	hydrograph, applications and limitations. Stream gauging - discharge rating
	curves, flood peak, design flood and computation of probable flood. Flood
---------------	---
	routing - channel and reservoir routing. Drought - classification, causes and
	impacts, drought management strategy.
	Practical:
	Visit to meteorological observatory and study of different instruments. Design of
	rain gauge network. Exercise on intensity - frequency - duration curves. Exercise
	on depth - area - duration and double mass curves. Analysis of rainfall data and
	estimation of mean rainfall by different methods. Exercise on frequency analysis
	of hydrologic data and estimation of missing data, test for consistency of rainfall
	records. Exercise on computation of infiltration indices. Computation of peak
	runoff and runoff volume by Cook's method and rational formula. Computation
	of runoff volume by SCS curve number method. Study of stream gauging
	instruments - current meter and stage level recorder. Exercise on geomorphic
	parameters of watersheds. Exercise on runoff hydrograph. Exercise on unit
	hydrograph. Exercise on synthetic hydrograph. Exercise on flood routing.
References	• Chow, V.T., D.R. Maidment and L.W. Mays. 2010. Applied Hydrology,
	McGraw Hill Publishing Co., New York.
	• Jaya Rami Reddy, P. 2011. A Text Book of Hydrology. University Science
	Press, New Deini.
	• Linsley, K.K., M.A. Koller, and J.L.H. Paulius. 1984. Hydrology for Engineers McGrow Hill Publishing Co. Japan
	Mutraia K N 1000 Applied Hydrology Tata McGraw Hill Publishing Co.
	• Muticja, K.N. 1990. Applied Hydrology. Fata McOraw-Hill Fublishing Co., New Delhi
	• Rachunath H.M. 2006 Hydrology: Principles Analysis and Design
	Revised 2nd Edition New Age International (P) Limited Publishers New
	Delhi.
	• Subramanya, K. 2008. Engineering Hydrology. 3rd Edition, Tata McGraw-
	Hill Publishing Co., New Delhi.
	• Suresh, R. 2005. Watershed Hydrology. Standard Publishers Distributors,
	Delhi.
	Varshney, R.S. 1986. Engineering Hydrology. Nem Chand and Brothers,
	Roorkee, U.P.
Course	At the end of the course, learners will be able
Outcomes	CO1: Demonstrate a profound understanding of the hydrologic cycle,
	precipitation forms, rainfall measurement techniques, and frequency analysis,
	Tocusing on mean rainfall estimation and its significance in hydrological studies.
	co2. Apply knowledge of mass curves, nyelographs, depth-area-duration curves,
	and intensity-duration-inequency relationships, emphasizing them fore in abaracterizing reinfall patterns and their influence on hydrologic processes
	CO3: Analyze hydrologic processes such as intercention infiltration and
	evaporation exploring the factors that influence them their measurement
	methods and the indices used to assess their impact on water resources
	CO4: Evaluate runoff factors affecting peak runoff rate and volume, utilizing
	methodologies like the Rational method, Cook's method, and SCS curve number
	method, along with stage-discharge rating curves, to estimate and manage runoff
	effectively.
	CO5: Assess watershed geomorphology, including linear, aerial, and relief
	aspects, stream order, drainage density, and stream frequency, and demonstrate
	an understanding of hydrograph components, base flow separation, unit
	hydrograph theory, flood estimation techniques, flood routing methods, and
	drought classification and management strategies.
Mapping bet	ween CUs with PUs and PSUs manning of PO and PSO for the style of manning
Manning ba	mapping of rO and rSO for the style of mapping.
I wrapping be	(WCCII UUS, I US AIIU I DUS

CO							PO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																	
CO2																	
CO3																	
CO4																	
CO5																	

Course Code	IDE-2.4.7
Course Title	Irrigation Engineering
Course Cred	it 3(2+1)
Objectives	1. Design and implement efficient irrigation systems that utilize
of Course	mathematical and scientific principles to optimize water delivery and
	crop yield.
	2. Analyse the environmental impact of irrigation projects and develop
	sustainable practices that minimize water waste and protect natural
	resources.
	3. Effectively communicate the importance of efficient irrigation and its
	impact on agricultural productivity and environmental sustainability to
	stakenolders.
	4. Conduct research on soil-water-plant relationships to optimize irrigation
	5 Design and manage underground pine conveyance systems for efficient
	3. Design and manage underground pipe conveyance systems for efficient
	and remable water derivery.
Course	Theory: Major and medium irrigation schemes of India purpose of irrigation
Content	environmental impact of irrigation projects, source of irrigation water, present
	status of development and utilization of different water resources of the country;
	measurement of irrigation water: weir, flumes and orifices and other methods;
	open channel water conveyance system : design and lining of irrigation field
	channels, on farm structures for water conveyance, control & distribution;
	underground pipe conveyance system: components and design; land grading:
	criteria for land levelling, land levelling design methods, estimation of earth
	work; soil water plant relationship: soil properties influencing irrigation
	management, soil water movement, infiltration, soil water potential, soil
	moisture characteristics, soil moisture constants, measurement of soil moisture,
	moisture stress and plant response; water requirement of crops: concept of
	evapotranspiration (ET), measurement and estimation of ET, water and
	irrigation requirement of crops, depth of irrigation, frequency of irrigation,
	irrigation efficiencies; surface methods of water application: border, check basin
	and furrow irrigation- adaptability, specification and design considerations.
	Practical: Massurement of soil moisture by different soil moisture massuring
	instruments: measurement of irrigation water: measurement of infiltration
	characteristics: determination of bulk density field capacity and wilting point:
	estimation of evanotranspiration: land grading methods: design of underground
	nineline system: estimation of irrigation efficiency: study of advance recession
	and computation of infiltration opportunity time: infiltration by inflow-outflow
	method: evaluation of border irrigation method: evaluation of furrow irrigation
	method: evaluation of check basin irrigation method.
References	• Michael A.M. 2012, Irrigation: Theory and Practice, Vikas Publishing
	House New Delhi.
	• Majumdar D. K. 2013. Irrigation Water Management Principles. PHI
	learning Private Limited New Delhi 2nd Edition.

 Allen R. G., L. S. Pereira, D. Raes, M. Smith. 1998. Evapotranspiration guidelines for computing crop water requiren Irrigation and drainage Paper 56, FAO of United Nations, Ro Murthy VVN. 2013. Land and Water Management Enginee Kalyani Publishers, New Delhi. Israelsen O W. and Hansen V. E and Stringham G. E. 1980. Irrig Principles and Practice, John Wiley & Sons, Inc. USA. 	Crop lent. ome. ting.
Course At the end of the course, learners will be able	
OutcomesCO1: Apply engineering principles to design and implement efficient irrig systems that optimize water delivery and crop yield. CO2: Analyse soil-water-plant relationships to optimize irrigation practice improve crop water use efficiency. CO3: Develop and evaluate innovative solutions for water manage challenges in agricultural settings, considering environmental and sustainal factors. CO4: Effectively communicate the importance of efficient irrigation arr impact on stakeholders within the agricultural industry and broader commu CO5: Demonstrate proficiency in utilizing modern tools and technologie measurement, data analysis, and design in irrigation engineering projects.Mapping between COs with POs and PSOs	ation and ment bility d its nity. s for
Mapping between Cos, POs and PSOs	

СО		РО													PSO			
	1	2	3	4	4 5 6 7 8 9 10 11 12									2	3			
CO1																		
CO2																		
CO3																		
CO4																		
CO5																		

CO = Course outcome with PSO = Program Specific outcome PO1

Marks System

1- Slightly Related, 2- Moderately Related, 3- Substantial Related, Leave Blank for non-related

Course Code	e e	IDE-2.4.8
Course Title		Sprinkler and Micro irrigation Systems
Course Cred	lit	2(1+1)
Objectives of Course	1. 2. 3. 4. 5.	Understand the principles and applications of sprinkler and micro irrigation systems. Design and install sprinkler and micro irrigation systems for various crops and soil conditions. Evaluate the performance and efficiency of sprinkler and micro irrigation systems. Implement fertigation techniques for efficient fertilizer application. Analyze the economic feasibility of sprinkler and micro irrigation systems.
Course Content	Theor sprink selecti evalua efficie merits genera hydrau operat cloggi advan compa freque	ry: Sprinkler irrigation: adaptability, problems and prospects, types of ler irrigation systems; design of sprinkler irrigation system: layout on, hydraulic design of lateral, sub-main and main pipe line, design steps; on of pump and power unit for sprinkler irrigation system; performance ation of sprinkler irrigation system: uniformity coefficient and pattern ency; Micro Irrigation Systems: types-drip, spray, & bubbler systems, and demerits, different components; Design of drip irrigation system: al considerations, wetting patters, irrigation requirement, emitter selection, alics of drip irrigation system; maintenance of micro irrigation system: ng problems, filter cleaning, flushing and chemical treatment; fertigation: tages and limitations of fertigation, fertilizers solubility and their atibility, precautions for successful fertigation system, fertigation system, duration and injection rate, methods of fertigation.
	Practi and ir pattern irrigat install relatic of filt injecti fertiga evalua	ical: Study of different components of sprinkler irrigation system; design istallation of sprinkler irrigation system; determination of precipitation n, discharge and uniformity coefficient; cost economics of sprinkler ion system; study of different components of drip irrigation; design and ation of drip irrigation system; determination of pressure discharge onship and emission uniformity for given emitter; study of different types ers and determination of filtration efficiency; determination of rate of on and calibration for chemigation/fertigation; design of irrigation and ation schedule for crops; field visit to micro irrigation system and ation of drip system; cost economics of drip irrigation system.
References	•	 Keller Jack and Bliesner Ron D. 2001. Sprinkle and Trickle Irrigation. Springer Science+ business Media, New York . Mane M.S. and Ayare B.L.2007. Principles of Sprinkler Irrigation systems, Jain Brothers, New Delhi. Mane M.S and Ayare B.L. and MagarS.S.2006.Principles of Drip Irrigation systems, Jain Brothers, New Delhi. Michael AM, Shrimohan and KR Swaminathan. Design and evaluation of irrigation methods, (IARI Monograph No.1). Water Technology Centre, IARI New Delhi. Michael A.M. 2012. Irrigation: Theory and Practice. Vikas Publishing Vikas Pub. House New Delhi. Choudhary M.L and Kadam U.S 2006. Micro irrigation for cash crops Westville Publishing
Course Outcomes	At the CO1: irrigat	end of the course, learners will be able Explain the types, components, and applications of sprinkler and micro ion systems.

CO2: Design and layout sprinkler and micro irrigation systems considering crop water requirements and soil characteristics.

CO3: Evaluate the performance of sprinkler and micro irrigation systems using relevant metrics like uniformity coefficient and pattern efficiency.

CO4: Implement and manage fertigation systems for efficient nutrient delivery to crops.

CO5: Analyse the economic viability of sprinkler and micro irrigation systems considering initial investment, operational costs, and potential benefits.

Mapping between Cos, POs and PSOs

СО							PO						PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	2	1	1	1	1	1	2	2	1	1	3	3	2
CO2	3	1	3	1	2	1	1	1	2	2	2	2	3	3	3
CO3	2	3	2	2	1	1	1	1	2	1	2	2	3	2	2
CO4	3	2	3	2	1	2	2	1	2	2	2	2	3	3	3
CO5	3	1	3	1	2	1	1	1	2	1	3	3	3	3	3

Course Code	e REE -2.4.9
Course Title	Fundamentals of Renewable Energy Sources
Course Cred	lit 3 (2+1)
Objectives	1. To understand the various forms of conventional energy resources.
of Course	2. To learn the present energy scenario and the need for energy conservation.
	3. To explain the concept of various forms of renewable energy.
	4. To outline division aspects and utilization of renewable energy sources for
	both domestics and industrial application.
	5. Analyse the environmental aspects of renewable energy sources.
Course	Theory: Concept and limitation of Renewable Energy Sources (RES), Criteria
Content	for assessing the potential of RES, Classification of RES, Solar, Wind,
	Geothermal, Biomass, Ocean energy sources, Comparison of renewable energy
	sources with non renewable sources. Solar Energy: Energy available from Sun,
	Solar radiation data, solar energy conversion into heat through, Flat plate and
	Concentrating collectors, different solar thermal devices, Principle of natural
	and forced convection drying system, Solar Photo voltaics: p-n junctions. Solar
	cells, PV systems, Stand alone, Grid connected solar power station, Calculation
	Energy Energy available from wind Constal formula Lift and drag Basis of
	Wind energy conversion Effect of density Frequency variances. Angle of
	attack Wind speed Types of Windmill rotors. Determination of torque
	coefficient Induction type generators Working principle of wind power plant
	Bio-energy Pyrolysis of Biomass to produce solid liquid and gaseous fuels
	Biomass gasification. Types of gasifier, various types of biomass cook stoves
	for rural energy needs. Biogas: types of biogas plants, biogas generation, factors
	affecting biogas generation and usages, design consideration, advantages and
	disadvantages of biogas spent slurry.
	Practicals:
	Study of different types of solar cookers, solar water heating system, natural
	convection solar dryer, forced convection solar dryer, solar desalination unit,
	solar greenhouse for agriculture production, biogas plants, biomass gasifiers,
	biomass improved cook-stoves, solar photovoltaic system.
References	1. Rai, G.D. 2013. Non-Conventional Energy Sources, Khanna Publishers.
	Delhi.
	2. Rai, G.D., Solar Energy Utilization, Khanna Publishers, Delhi.

	3. Kh	3. Khandelwal, K.C. & S. S. Mahdi. 1990. Biogas Technology- A Practical Handbook													
	Ha	ndboo	ok.												
	4. Rat	hore	N. S.,	Kurc	chania	a A. I	K., Pa	nwar	N. L. 2	2007. N	Ion Coi	ivent	ional		
	Ene	ergy S	Source	es, Hi	mans	hu Pi	ublica	tions							
	5. Tiv	vari, C	G.N. a	und G	hosha	al, M	K. 20)05. F	Renewa	able En	ergy Re	esour	ces: E	Basic	
	Pri	Principles and Applications. Narosa Pub. House. Delhi.													
	6. Rat	6. Rathore N. S., Kurchania A. K., Panwar N. L. 2007. Renewable Energy,													
	The	Theory and Practice, Himanshu Publications.													
	7. Ree	7. Reed TB and Das A. Handbook of Biomass Downdraft Gasifier Engine													
	Sys	tem.													
	8. The	e Bior	nass l	Energ	gy Foi	undat	ion P	ress,	Colora	do; 198	34.				
Course	At the	end of	of the	cours	se, lea	arner	s will	be ab	ole						
Outcomes	CO1 :	Descr	ibe th	ne env	vironi	nenta	l aspo	ects o	f non-o	convent	tional e	nergy	y reso	urces.	
	In Co	npari	son v	vith v	ariou	is cor	iventi	onal	energy	y syster	ns, the	r pro	ospect	s and	
	limitat	ions.													
	CO2 :	Kno	w the	e nee	d of	rene	wable	e ene	rgy re	sources	s, histo	rical	and	latest	
	develo	opmer	nts. D	escrit	be the	use o	of sola	ar ene	rgy an	d the va	arious c	ompo	onents	s used	
	in the	ener	gy pr	oduct	tion v	vith 1	respe	ct to	applic	ations I	ike - h	eatin	ig, co	oling,	
	desali	natior	ı, pov	ver ge	enerat	10n, (irying	g, coo	King e	tc.				a din	
		Appr	ectate	e the l	knov	01 W.		ificati	and u	le vario	ous com	ipone	ents u	sed m	
		Jind	lereta	nd tl		oncer	viass.	Bio	UIIS.	enerav	recou	rces	and	their	
	classif	one icatic	icista n tvi	nes of	hiog	as Pl	ants_	annlia	rations	chergy	icsou	1005	anu	ului	
	CO5:	Com	nare S	Solar	Wind	l and	hio ei	ierov	systen	, ns their	. prospe	ects /	Advar	itages	
	and lin	nitati	ons.A	couir,	the the	know	/ledge	e of fu	el cell	s. wave	prospe	tidal	l powe	er and	
	geothe	ermal	princ	iples	and a	pplic	ation	s.		,	1	,	I		
Mapping b	etween (Cos, P	Os a	nd PS	SOs	11									
CO		,				PO							PSO)	
	1 2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1															
CO2															
CO3															
CO4															
CO5															

Course Code	FMPE-3.5.1						
Course Title	Farm Machinery and Equipment-I						
Course Credi	t = 3(2+1)						
Objectives	1) To understand the concept of farm mechanization, status, scope and its utility.						
of Course	2) To get the knowledge about tillage, types of tillage and equipments used for						
	it.						
	3) To get the knowledge about sowing and planting machineries, its						
	components, adjustments and calibration.						
4) To acquaintance with calculations of cost of operation of various agricu							
	machineries						
	5) To familiarise about the material of construction used for development of						
	components of agricultural machineries.						
Course	Theory						
Content	Introduction to farm mechanization. Classification of farm machines. Unit						
	operations in crop production. Identification and selection of machines for						
	various operations on the farm. Hitching systems and controls of farm						
	machinery. Calculation of field capacities and field efficiency. Calculations for						
	economics of machinery usage, comparison of ownership with hiring of						
	machines. Introduction to seed-bed preparation and its classification.						

	I	Famil	miliarization with land reclamation and earth moving equipment.												
]	Introd	luctio	on to	mac	hines	used	for p	rima	ry tilla	ige, see	condary	^v tilla	ige, r	otary
	t	illage	e, dee	ep till	age a	nd m	inimur	n till	age. I	Measur	ement	of draft	of ti	llage	tools
	8	and ca	alcula	ations	s for p	ower	requi	remen	nt for	the till	age ma	chines.	Intro	ducti	on to
	t	illage	e ma	chine	s like	e mo	uld-bo	ard p	loug	h, disc	ploug	h, chise	el plo	ough,	sub-
	5	soiler	iler, harrows, cultivators, Identification of major functional components.												
	1	Attacl	ttachments with tillage machinery. Introduction to sowing, planting &												
	t	ransp	ansplanting equipment. Introduction to seed drills, no-till drills, and strip-till												
	0	drills.	Intro	ducti	on to	plant	ers, be	d-pla	nters	and otl	her plai	nting eq	uipm	ent. S	Study
	(of typ	pes o	of fu	rrow	oper	ners an	nd m	eteri	ng sys	tems i	n drills	s and	l pla	nters.
	(Calib	Calibration of seed-drills/ planters. Adjustments during operation. Introduction												
	t	o ma	terial	ls use	ed in	const	ruction	n of f	arm	machir	nes. He	eat treat	ment	proc	esses
	8	and th	neir ro	equire	emen	t in fa	arm ma	achin	es.						
	I	Prope	rties	of	mater	rials	used	for	critic	al and	funct	tional of	comp	onen	ts of
	8	igricu	iltura	l ma	ichin	es. Ii	ntrodu	ction	to	steels	and a	lloys f	or a	gricu	ltural
	8	applic	catior	n. Id	entifi	cation	n of 1	heat	treat	ment	proces	ses spe	eciall	y foi	the
	2	igricu	iltura	l mac	chine	ry coi	npone	nts.							
		Pract			• •	11.00					•	1 0		c 1 ·	
	1	-am1	1ariza	ation	with	diffe	rent fa	arm 1	mple	ments	and to	ols. Stu	idy o	of hite	ching
	S	syster	ns, P	roble	ms oi	n mac	hinery	man	agem	ient. St	udy of	primary	y and	secor	ndary
	t	illage	e ma	chine	ry –	const	ructio	n, op	eratio	on, adj	ustmer	its and	calcu		ns of
	I	power	r and	i dra	it rec		nents.	Stud	y 01	SOW11	g and	plantin	g eq	uipine Stud	ent –
	(+	ronor	lonto	m, ty	/pes,		atabla	oto	Callt Idont	ificatio	and a	atoriala	ents.	Sluc	ly 01
	i	n aar	icult	ural n	nachi	nerv	and str	dv o	f mat	erial pr	opertie			nisu u	cuon
		n agi Study		heat	trea	tmen	t proc	iuy U.	sub	viected	to	itical <i>d</i>	omn	onent	s of
	2	agrici	ultura	l mac	chine	rv		00000	Suc	Jeelea	10 01	incui v	Joinp	onem	.5 01
References		Ke	nner	RA	Rov	Barge	r & El	Bar	ger]	Princip	les of I	Farm M	achir	erv	
		Sm	ith H	P and	1 LH	Wilk	ev. Far	m M	achir	nerv and	d Equi	oment.			
		Cul	pin (Claud	e. Fa	rm M	achine	erv.							
		Sriv	vasta	va A(C. Ele	ement	s of Fa	arm N	/lachi	inery.					
		Lal	Radl	hey a	nd A	C Dat	ta. Ag	<u>ric</u> ult	ural I	Engine	ering.				
Course	1	At the	e end	of th	e cou	rse, le	earners	s will	be a	ble					
Outcomes		C O1 :	Knov	w abo	out sta	ntus a	nd sco	pe fa	rm n	nechani	ization	in Indi	a.		
		C O2 :	Unde	erstan	d the	conc	ept of	tillag	e and	l equip	ments	used for	r it.		
		C O3 :	Unde	erstan	d the	work	king/ca	alibra	tion/	adjustr	ments o	of sowi	ng an	d pla	nting
	1	nachi	inerie	es.											
		C O 4:	Able	to ca	lcula	te of	cost of	oper	ation	of var	ious ag	ricultu	al ma	achin	eries
		CO5:	Able	to	select	t the	prope	er m	ateria	deve	elopme	nt of	comp	onen	ts of
	6	agricultural machineries.													
Mapping be	twe	en Cos, POs and PSOs													
	<u>101</u>	PSO										2			
CO1	1	2	3	4	5	0	/	ð	9	10	11	12	1	2	3
CO1															
CO_2															
C03															
C04															

Course Code	FMPE-3.5.2										
Course Title	Tractor Systems and Controls										
Course Cred	3(2+1)										
Objectives	1) To get knowledge about different systems of tractor- its need, types, functional										
of Course	requirements, construction and principle of operation.										
	2) To acquaintance with tractor mechanics										
	3) To understand the concept of traction and weight transfer phenomenon of										
	tractor.										
	4) To understand use of ergonomic considerations and operational safety in										
	tractor design.										
	5) To familiarise about tractor testing and its respective codes.										
Course	Theory										
Content	Study of need for transmission system in a tractor. Transmission system – types,										
	major functional systems. Study of clutch – need, types, functional requirements,										
	construction and principle of operation. Familiarization with single plate, multi-										
	plate, centrifugal and dual clutch systems. Study of Gear Box – Gearing theory,										
	principle of operation, gear box types, functional requirements, and calculation										
	for speed ratio. Study of differential system – need, functional components,										
	construction, calculation for speed reduction. Study of need for a final drive.										
	Study of Brake system – types, principle of operation, construction, calculation										
	or braking torque. Study of steering system – requirements, steering geometry										
	Engligerization with Ackorman stooring. Stooring systems in track type tractors										
	Study of Hydraulic system in a tractor. Principle of operation types main										
	functional components functional requirements Familiarization with the										
	Hydraulic system adjustments and ADDC Study of tractor power outlets – PTO										
	PTO standards, types and functional requirements. Introduction to traction										
	Traction terminology Theoretical calculation of shear force and rolling										
	resistance on traction device. Study of wheels and tyres – Solid tyres and										
	pneumatic tyres, tyre construction and tyre specifications. Study of traction aids.										
	Study of tractor mechanics – forces acting on the tractor. Determination of CG										
	of a tractor. Determination and importance of moment of inertia of a tractor.										
	Study of tractor static equilibrium, tractor stability especially at turns.										
	Determination of maximum drawbar pull. Familiarization with tractor as a										
	spring-mass system. Ergonomic considerations and operational safety.										
	Introduction to tractor testing. Deciphering the engine test codes.										
	Practical										
	Introduction to transmission systems and components; Study of clutch										
	functioning, parts and design problem on clutch system; Study of different types										
	of gear box, calculation of speed ratios, design problems on gear box; Study on										
	differential and final drive and planetary gears; Study of brake systems and some										
	lesign problems; Steering geometry and adjustments; Study of hydraulic systems										
	in a tractor, hydraulic trainer and some design problems; Appraisal of various										
	controls in different makes tractors in relation to anthropometric measurements.										
	Determination of location of CG of a tractor, Moment of Inertia of a tractor.										
Deferences	Liliadahl LR and Others. Treators and Their Dower Units										
References	• Liteuani J D and Others. Tractors and Their Power Units.										
	• Nouchev v and O Noucheva. Hactors and Automobiles. • Singh Kirnal Automobile Engineering Vol I										
	• Singh Kupal. Automotive Mechanics: Dringinles and Practices										
	C B Richey Agricultural Engineering Handbook										
	• John Deere Fundamentals of Service Hydraulics										
	Relevant BIS Test Codes for Tractors										

Course	A	At the end of the course, learners will be able													
Outcomes	0	CO1 : Able to identify and repair trouble shooting coming during operation of the													
	tı	ractor													
	0	CO2 : Design different systems of tractor													
	0	CO3: Able to develop different components of the tractor system.													
	0	O4 :Able to design comfortable and less hazardous work station for tractor.													
	0	CO5 : Become familiar with tractor testing and its respective codes.													
Mapping	betw	een C	'os. P	Os a	nd PS	SOs									
CO	PO												PS	0	
CO	PO 1	2	3	4	5	6	7	8	9	10	11	12	PS 1	0 2	3
CO CO1	PO 1	2	3	4	5	6	7	8	9	10	11	12	PS 1	0 2	3
CO CO1 CO2	PO 1	2	3	4	5	6	7	8	9	10	11	12	PS 1	0 2	3
CO CO1 CO2 CO3	PO 1	2	3	4	5	6	7	8	9	10	11	12	PS 1	0	3
CO CO1 CO2 CO3 CO4	PO 1	2	3	4	5	6	7	8	9	10	11	12	PS 1	O 2	3

Course Cod	e	PFE - 3.5.3								
Course Title	e	Agricultural Structures and Environment Control								
Course Cre	dit	3 (2+1)								
Objectives	1. To i	mpart knowledge on need of environmental control, environmental								
of Course	contr	ol systems, farm structures, etc.								
	2. To in	npart knowledge on storage of grain, traditional and modern storage								
	struc	tures, rural water supply, sewage system etc.								
	3. To e	nable the students to acquire skills and to understand farm structures,								
	desig	n grain storage, etc, and rural development activities								
Course	Planning	and layout of farmstead. Scope, importance and need for environmental								
Content	control, p	physiological reaction of livestock environmental factors, environmental								
	control systems and their design, control of temperature, humidity and other air									
	constituents by ventilation and other methods, Livestock production facilities,									
	BIS Star	ndards for dairy, piggery, poultry and other farm structures. Design,								
	construct	tion and cost estimation of farm structures; animal shelters, compost pit,								
	fodder si	lo, fencing and implement sheds, barn for cows, buffalo, poultry, etc.								
	Storage of	of grains, Causes of spoilage, water activity for low and high moisture								
	Tradition	its infinite for storage, Molsture and temperature changes in grain office,								
	structure	s $(CAP = hermetic storage = Puse = hin PCC ring hins) = Design$								
	consider	s (CAF, inclinetic storage, Fusa bill, RCC fillig bills), Design								
	Deen hir	Calculation of pressure in bins. Storage of seeds Rural living and								
	develop	nent rural roads their construction cost and renair and maintenance								
	Sources	of water supply, norms of water supply for human being and animals								
	drinking	water standards and water treatment suitable to rural community. Site								
	and orier	ntation of building in regard to sanitation, community sanitation system:								
	sewage s	system and its design, cost and maintenance, design of septic tank for								
	small fan	nily. Estimation of domestic power requirement, source of power supply								
	and elect	rification of rural housing.								
References	• Pandey	, P.H. Principles and practices of Agricultural Structures and								
	Enviro	nmental Control, Kalyani Publishers, Ludhiana.								
	• Ojha, 7	C.P and Michael, A.M. Principles of Agricultural Engineering, Vol. I,								
	Jain Br	others, Karol Bag, New Delhi.								
	• Nathonson, J.A. Basic Environmental Technology, Prentice Hall of India,									
	New D	elhi.								
	• Venug	opal Rao, P. Text Book of Environmental Engineering, Prentice Hall of								
	India, I	New Delhi.								
	• Garg, S	S.K. Water Supply Engineering, Khanna Publishers, New Delhi-6.								

	•]	• Dutta, B.N. Estimating and Costing in Civil Engineering, Duttta & CO,													
]	Luckı	10W.												
	•]	Khan	na, P.	N. In	dian	Pract	ical C	Civil I	Engin	eer's H	Iand Bo	ook, En	ginee	er's	
]	Publishers, New Delhi. Sahay, K.M. and Singh, K.K. Unit Operations of													
		Agricultural Processing, Vikas publishing pvt. Ltd, Noida.													
	•]	Banei	jee, (G.C. A	A Tex	t Bo	ok of	Anin	nal H	usband	ry, Oxt	ford IB	H Pul	blishi	ng
	(Co, N	lew D	elhi											
Course	At	the e	end of	the c	cours	e, lea	rners	will l	be ab	le					
Outcomes	C	D1 : T	'o acq	uaint	the s	tuden	ts wi	th var	ious a	aspects	of agri	cultura	l stru	ctures	such
	as	farm	stead	l and	dairy	barn	•								
	C	CO2: To acquaint the students with various aspects of environmental control,													
	ren	enewable and non-renewable resources of energy													
	C	CO3: Graps the ramifications of the agricultural structural solution within around													
	an	and awareness for sustainable development													
	CO	D4: I	Desigi	n sol	ution	s for	engi	neerii	ng as	pects of	of agri	cultural	stru	ctures	s and
	en	viron	ment	al pai	t to f	ulfil t	the re	quire	ments	s, givin	ig due 1	regards	to pu	blic b	lealth
	an	d safe	ety an	d env	viron	menta	al fact	tors.							
Mapping b	etwe	en C	os, P	Os ai	nd PS	SOs									
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course Cod	e	PFE-3.5.4									
Course Title)	Post Harvest Engineering of Cereals, Pulses and Oil Seeds									
Course Crea	lit	3 (2+1)									
Objectives	1. T	To understand the performance evaluation of different types of cleaners and									
of Course	S	eparators, size reduction machines.									
	2. To	o understand the laws of size reduction, theory of mixing and milling of									
	ce	reals, pulses and oilseeds.									
	3. St	udy of different types of conveying and elevating equipments, various types									
	of	of dryers and different equipments in oil mills.									
Course	Clear	ning and grading, aspiration, scalping; size separators, screens, sieve analysis,									
Content	capa	city and effectiveness of screens. Various types of separators: specific gravity,									
	magi	netic, disc, spiral, pneumatic, inclined draper, velvet roll, colour sorters,									
	cyclo	one, shape graders. Size reduction: principle, Bond's law, Kick's law,									
	R1tt1	nger's law, procedure (crushing, impact, cutting and shearing), Size reduction									
	macr	inery: Jaw crusher, Hammer mill, Plate mill, Ball mill. Material handling									
	equip	pinent. Types of conveyors: Bell, foller, chain and screw. Elevators: bucket,									
	Dran	es & noisis. Trucks (reingerated/ unreingerated), Pheumatic conveying.									
	Dryn	ig: moisture content and water activity; Free, bound and equilibrium moisture									
	its m	se in drying Drying principles and theory. This layer and deep hed drying									
	analy	vsis. Falling rate and constant rate drying periods maximum and decreasing									
	drvir	age rate period drying equations. Mass and energy balance. Shedd's equation									
	Drve	er performance. Different methods of drying batch-continuous: mixing-non-									
	mixi	ng. Sunmechanical, conduction, convection, radiation, superheated steam.									
	temp	pering during drying. Different types of grain dryers: bin, flat bed, LSU.									
	colui	mnar, RPEC, fluidized, rotary and tray. Mixing: Theory of mixing of solids									
	and	pastes, Mixing index, types of mixers for solids, liquid foods and pastes.									
	Milli	ing of rice: Conditioning and parboiling, advantages and disadvantages,									
	tradi	tional methods, CFTRI and Jadavpur methods, Pressure parboiling method,									
	Туре	es of rice mills, Modern rice milling, different unit operations and equipment.									

	Mi mi	illing lling lling	of v met	vheat, hods,	unit com	oper merci	ations al m	s and ethod	equi s, pro	pment. e-condi	Millin tioning	g of pu g, dry r	ilses: nillin	tradit g and	tional d wet
	of	corn	and	its pi	roduc	ts. Di	rv an	d we	t mill	ing. M	illing o	of oilse	eds: 1	necha	anical
	ex	press	ion,	scre	w p	ress,	hyc	Irauli	c pr	ess, s	olvent	extra	ction	met	hods,
	pre	econd	lition	ing o	f oils	eeds,	refin	ing o	f oil,	stabiliz	zation	of rice	bran.,	Extr	usion
	co	oking	g: prii	nciple	, fact	ors af	fecti	ıg, siı	igle a	nd twir	n screw	extrude	ers. B	y-pro	ducts
	uti	lizati	on.	-				-	-					• -	
References	•	Chak & IB	ravei H pu	rty, A blishi	. Post ng Co	-Harv 5. Ltd	vest T Ne	echno w De	ology lhi.	of cere	als, pu	lses and	loilse	eds. (Dxford
	•	Dash	. S.K	Be	bartta	. J.P.	and	Kar,	A. R	ice Pro	cessing	g and A	llied	Opera	ations.
		Kaly	ani P	ublisł	ners, l	New 1	Delhi	•			c			1	
	•	Saha	y, K.	M. an	d Sir	igh, K	K.K. 1	994.	Unit	operati	ons of	Agricul	ltural	Proce	essing.
		Vika	s Pub	olishir	ig hoi	use P	vt. Lt	d. Ne	w De	lhi.		-			•
	•	Gean	kopli	is C. J	I. Tra	nspor	t pro	cesses	and	unit op	peration	ns, Pren	tice H	Hall of	f India
		Pvt I	.td, N	lew I	Delhi	R.L.	2003	. Unit	Ope	rations	in Foo	d Proce	essing	g. Perg	gamon
		Press	. Oxi	ford.	U.K.		_	_							
	•	Hend	lersoi	n, S.N	1., an	d Per	ry, R	. L. A	Agricu	ltural	Process	s Engin	eering	g, Cha	apman
		and h	nall, I	Londo	on Mo	Cabe	e, W.I	L., Sn	nith J	.C. and	Harrie	ott, P. C	nit o	perati	ons of
		Chen Sinal		Engii Doul	neerin	ig. Mi Ioldm	cGrav	W H11	$\frac{1}{2}$	004 Int	roduct	ion to E	ood E	Incin	amina
	•	Sillgi 3rd F	l, K. Iditio	Paul.	anu r adem	ic Pre	ian, K	Den	115. ZV n	004. III	Iroduct	IOII tO F	000 E	ingine	ering.
		Broo	ker]	n. Ac D R	Rakk	rer_Δ	rkem:	a F W	u. 7 Ha		Z 1997	Drvin	o and	1 stor	age of
	•	grain	s and	Loilse	eds.	AVI	mblic	a,1. W	., 11a	, C. W	. 1772	. Drym		1 5101	
Course	At	the e	end of	f the c	course	e. leai	mers	will b	e abl	e					
Outcomes	C	D1:	Cons	truct	the fl	ow cł	nart a	nd lay	out o	of a foo	d proce	essing.			
	CO	D2:	Expl	ain tł	ne ba	isic u	nit o	perat	ion c	of food	proce	ssing i	n hai	ndling	g and
	pro	ocess	ing e	quipn	nent.			-			-	-		-	
	CO	D3:	Expl	ain th	e hai	nmer	mill	, attri	tion 1	nill, m	ixers, 1	mixing	index	c of a	feed
	mi	xer,	finen	less n	nodul	us ar	nd av	verage	part	icle siz	ze and	power	requ	ireme	ent in
	dif	feren	it typ	es of	conve	eyors.									
	C)4:	Dete	rmine	the	effic	eiency	/ of	cyclo	one sep	parator	pneur	natic	sepa	rator,
	inc	lente	d cyl	inder	and s	creen	pre c		er.		• ,		<i>,</i> .	1.0	c
		J5:	Ident	ify va	arious	meth	nods i	tor de	term	nıng m	oisture	conten	t usin	ig diff	terent
Manningh	dry	ying i	ecnn	iques		0									
	etwei		US, F	Us an	u rə	US	ΡΟ							PSO	
	1	2	3	4	5	6	7	8	Q	10	11	12	1	$\frac{150}{2}$	3
CO1	1		5	-	5	U	/	0	,	10	11	12	1	4	5
CO2												<u> </u>			
CO3															
CO4															
CO5															

Course Code	SWCE-3.5.5	
Course Title	Soil and Water Conservation Engineering	
Course Cred	1 = 2(2+1)	
Objectives of Course	 Understand the various types and causes of soil erosion, distinguishin between geological and accelerated erosion, while identifying erosio agents, factors influencing erosion, and their consequential effects. Explore the mechanics and diverse forms of water erosion, such as splash sheet, rill, gully, ravine, and stream bank erosion, along with the classification and stages of gully development. 	ng n h, ne

	 Apply the Universal Soil Loss Equation (USLE) and modified USLE for estimating soil loss, while comprehending the methods for estimating rainfall erosivity using KE>25 and EI30 methods, and evaluating soil erodibility based on topography, crop management, and conservation practices. Demonstrate proficiency in soil erosion measurement techniques, including the setup and functioning of runoff plots and soil samplers, for accurate assessment of erosion rates. Evaluate and discuss erosion control measures encompassing agronomical practices like contour farming, strip cropping, conservation tillage, mulching, as well as engineering interventions such as bunds, terraces, gully control principles, grassed waterways, wind erosion control measures, and techniques for land capability classification, sedimentation rates, silt monitoring, and storage loss in tanks.
Course	Theory:
Content	Soil erosion - Introduction, causes and types - geological and accelerated arosion
	agents, factors affecting and effects of erosion. Water erosion - Mechanics and
	forms - splash, sheet, rill, gully, ravine and stream bank erosion. Gullies -
	Classification, stages of development. Soil loss estimation – Universal soil loss
	equation (USLE) and modified USLE. Rainfall erosivity - estimation by KE>25 and EI30 methods Soil erodibility - topography crop management and
	conservation practice factors. Measurement of soil erosion - Runoff plots, soil
	samplers. Water erosion control measures - agronomical measures - contour
	farming, strip cropping, conservation tillage and mulching. Engineering measures–
	Bunds and terraces. Bunds - contour and graded bunds - design and surplussing arrangements. Terraces - level and graded broad base terraces, bench terraces -
	planning, design and layout procedure, contour stonewall and trenching. Gully and
	ravine reclamation - principles of gully control - vegetative measures, temporary
	structures and diversion drains. Grassed waterways and design. Wind erosion-
	vegetative, mechanical measures, wind breaks and shelter belts and stabilization
	of sand dunes.Land capability classification. Rate of sedimentation, silt monitoring
	and storage loss in tanks
	Study of different types and forms of water erosion. Exercises on computation of
	rainfall erosivity index. Computation of soil erodibility index in soil loss
	estimation. Determination of length of slope (LS) and cropping practice (CP)
	estimation/measuring techniques Study of rainfall simulator for erosion
	assessment. Estimation of sediment rate using Coshocton wheel sampler and multi-
	slot devisor. Determination of sediment concentration through oven dry method.
	Design and layout of contour bunds. Design and layout of graded bunds. Design
	and layout of broad base terraces. Design and layout of bench terraces. Design of
	vegetative waterways. Exercises on rate of sedimentation and storage loss in tanks.
	for wind erosion control. Visit to soil erosion sites and watershed project areas for
	studying erosion control and water conservation measures.
References	Singh Gurmel C. Venkataraman, G. Sastry and R.P. Joshi 1006, Manual of
	Soil and Water Conservation Practices. Oxford and IBH Publishing Co. Pvt.
	Ltd., New Delhi.
	• Mahnot, S.C. 2014. Soil and Water Conservation and Watershed
	Delhi.

	•	M	al. B	.C. 20)14. I	ntrod	luctio	n to S	Soil a	nd Wa	ter Co	nservati	on E	ngine	ering.
		20)14. k	Kalvar	ni Puł	olishe	ers. M	lichae	l. A.N	M. and	T.P. O	iha. 20	03. Pi	rincip	les of
		A	gricul	tural	Engir	neerir	ng. Ve	olume	e II. 41	th Edit	ion. Jai	n Broth	ers. N	New D	Delhi.
		M	urthv	. V.V	/.N.	2002	. La	nd ar	nd W	ater N	Ianage	ment E	ngine	eering	. 4th
		Ec	lition	, Kalv	/ani F	ublis	hers.	New	Delhi		8-			0	
		N	ormai	, Hud	lson.	1985	. Soil	Cons	servat	ion. Co	ornell I	Jniversi	tv Pr	ess. It	haka.
		N	ew Y	ork, U	JSA.								-	,	,
	•	- Fr	evert	, R.K.	, G.O	. Sch	wab,	T.W.	Edmi	nster a	nd K.K	. Barne	s. 200)9. So	il and
		W	ater (Conse	ervati	on Ei	ngine	ering	, 4th	Edition	n, John	Wiley	and	Sons,	New
		Y	ork.												
	•	- St	ıresh,	R.	2014	. Soi	l and	d Wa	ater (Conser	vation	Engine	ering	. Sta	ndard
		Ρι	ıblish	er Di	stribu	tors,	New	Delhi							
Course	А	t the e	end of	f the c	course	e, lea	rners	will t	be able	e					
Outcomes	C	01: 0	Comp	reher	nd the	e fun	dame	ental	princi	ples c	of soil	erosion	, dis	tingui	shing
	be	etwee	n geo	ologic	al an	d ac	celera	ated e	erosio	n, and	recog	nize the	e div	erse t	ypes,
	ca	uses,	agen	ts, an	d imp	oacts o	of erc	osion	on soi	l quali	ty and	landsca	pe.		
	C	O2: I	Demo	nstrat	e a c	ompr	ehens	sive u	nders	tandin	g of wa	ater ero	sion	mecha	anics,
	in	cludi	ng va	rious	form	s suc	h as s	plash	, shee	et, rill,	gully, 1	avine,	and s	tream	bank
	er	osion	, alon	igside	the c	lassi	fication	on and	d deve	elopme	ental sta	iges of	gullie	es.	
	C	O3: A	Apply	theo	retica	and and	l prae	ctical	know	ledge	to esti	mate so	oil lo	ss uti	lizing
	m	ethod	lologi	es lik	the the	Uni	versa	l Soil	Loss	Equat	tion (U	SLE), 1	nodif	fied U	ISLE,
	K	E>25	, and	EI30	meth	nods,	and e	evalua	ate so	il erod	ibility	concern	ing to	opogr	aphy,
	cr	op m	anage	ement	, and	conse	ervati	on pr	actice	s.					
	C	04: D	Develo	op pro	oficie	ncy ir	the 1	neasu	ireme	nt tech	niques	of soil e	erosic	on, util	lizing
	ru	noff	plots,	soil s	ample	ers, a	nd oth	ner re	levant	metho	ods for a	accurate	e asse	ssmer	nt and
	qu	ıantif	icatio	n of e	erosio	n rate	es.								
	C	O5:	Analy	yze,	evalu	ate,	and	prop	ose e	effectiv	ve eros	sion co	ntrol	strat	tegies
	er	ncomp	passin	ig bo	th ag	grono	mica	l pra	ctices	(cont	our fa	rming,	strip	crop	ping,
	co	onserv	vation	tillag	ge, m	ulchi	ng) a	nd en	ginee	ring m	easures	s (bunds	s, terr	aces,	gully
	co	ontrol	prin	ciples	s, gra	issed	wate	erway	s, wi	nd erc	osion c	ontrol,	land	capa	bility
	cl	assifi	catior	ı, sed	iment	tation	rates	s, silt :	monit	oring,	and sto	rage los	ss in t	anks)	•
Mapping b	etwe	en C	os, P	Os an	d PS	Os							r		
CO		1			1	r	PO	1	1					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
COl															
C02															
<u>CO3</u>															
C04															
CO5															

Course Code	e	SWCE-3.5.6							
Course Title		Watershed Planning and Management							
Course Cred	lit	2(1+1)							
Objectives	•	Understand the fundamental characteristics of watersheds, including their							
of Course	•	structure, size, and drainage patterns, while exploring the challenges, opportunities, and key components of watershed development projects. Analyze the complexities involved in watershed management, encompassing the investigation phase, topographical survey techniques, soil characteristics, vegetative cover assessment, and socio-economic factors that influence effective watershed planning.							
	•	Demonstrate knowledge of watershed management concepts, objectives, and factors affecting management decisions, utilizing land capability classes, hydrological data, watershed codification, and prioritization techniques like the sediment yield index for planning purposes.							

	• Apply theoretical and practical knowledge in developing water budgeting strategies for watersheds, focusing on rainwater conservation technologies
	in-situ and ex-situ storage methods, water harvesting, recycling practices,
	and dry farming techniques like inter-terrace and inter-bund land
	management.
	• Evaluate the integrated approach of watershed management, identifying its
	various components including agriculture, horticulture, forestry, fishery, and
	animal husbandry, and assess the influence of cropping systems, land
	management practices, and cultural strategies on watershed hydrology.
	Additionally, understand the execution, follow-up practices, maintenance,
	monitoring, and participatory aspects of watershed management programs,
	including project proposal formulation and cost-benefit analysis.
Course	Theory:
Content	Watershed - introduction and characteristics. Watershed development - problems
	and prospects, investigation, topographical survey, soil characteristics, vegetative
	cover, present land use practices and socio-economic factors. Watershed
	management - concept, objectives, factors affecting, watershed planning based on
	land capability classes, hydrologic data for watershed planning, watershed
	codification, delineation and prioritization of watersheds – sediment yield index.
	Water budgeting in a watershed. Management measures - rainwater conservation
	technologies - <i>in-situ</i> and <i>ex-situ</i> storage, water narvesting and recycling. Dry
	farming techniques - inter-terrace and inter-bund land management. Integrated
	horticulture nonarable lands - forestry fishery and animal husbandry. Effect of
	cronning systems land management and cultural practices on watershed
	hydrology. Watershed programme - execution follow-up practices, maintenance
	monitoring and evaluation. Participatory watershed management - role of
	watershed associations, user groups and self-help groups. Planning and
	formulation of project proposal for watershed management programme including
	cost-benefit analysis
	Practical:
	Exercises on delineation of watersheds using toposheets. Surveying and
	preparation of watershed map. Quantitative analysis of watershed characteristics
	and parameters. Watershed investigations for planning and development.
	Analysis of hydrologic data for planning watershed management. Water
	budgeting of watersheds. Prioritization of watersheds based on sediment yield
	index. Study of functional requirement of watershed development structures.
	Study of watershed management technologies. Practice on softwares for analysis
	of hydrologic parameters of watershed. Study of fole of various functionaries in watershed development programmes. Techno economic visibility englycis of
	watershed projects. Visit to watershed development project areas
References	• Ghanshyam Das 2008 Hydrology and Soil Conservation Engineering:
References	Including Watershed Management 2nd Edition Prentice-Hall of India
	Learning Pvt. Ltd., New Delhi.
	• Katyal, J.C., R.P. Singh, Shriniwas Sharma, S.K. Das, M.V. Padmanabhan
	and P.K. Mishra. 1995. Field Manual on Watershed Management. CRIDA,
	Hyderabad.
	• Mahnot, S.C. 2014. Soil and Water Conservation and Watershed
	Management. International Books and Periodicals Supply Service. New
	Delhi.
	• Sharda, V.N., A.K. Sikka and G.P. Juyal. 2006. Participatory Integrated
	Watershed Management: A Field Manual. Central Soil and Water
	Conservation Research and Training Institute, Dehradun.
	• Singh, G.D. and T.C. Poonia. 2003. Fundamentals of Watershed Management
	Technology. Yash Publishing House, Bikaner.

	•	Si	ngh, I	P.K. 2	2000.	. Wat	ershe	ed Ma	anage	ment:	Design	and Pra	actice	es. E-1	nedia
		Pu	blica	tions,	Udai	ipur.									
	•	Siı	ngh, I	R.V.	2000	. Wa	tershe	ed Pla	annin	g and 1	Manag	ement.	Yash	Publi	shing
		Ho	ouse,	Bikar	ner.										
	•	Tie	dema	n,E.N	1 . 19	999.	Wat	ershe	d M	lanager	nent:	Guideli	nes	for I	ndian
		Co	onditi	ons. (Omeg	ga Sci	entifi	c Pul	olishe	rs, Nev	v Delh	i.			
Course	CO	1: 1	Demo	onstra	ite c	ompr	ehen	sion	of v	watersh	hed ch	aracteri	stics,	incl	uding
Outcomes	top	ogra	phy,	soil	attri	ibutes	s, ve	getat	ive o	cover,	and	socio-ec	onon	nic f	actors
	infl	uenc	cing	wate	rshed	l dev	velop	ment	, and	l its	implica	ations i	in ir	nvestig	gating
	wat	tersh	ed pr	oblen	ns an	d pro	spect	s.							
	CO	2: A	pply	the p	orinci	ples o	of wa	tersh	ed m	anagen	nent by	analyz	ing h	ydrolo	ogical
	data	a, co	onduc	cting	wate	rshec	l deli	ineati	on, c	odifica	tion, a	and prio	oritiz	ation	using
	sed	imer	nt yie	ld ind	dex, v	while	integ	gratin	g wat	ter bud	geting	techniq	ues f	or eff	ective
	rese	ource	e allo	cation	n.										
	CO	3: E	Evalua	ate ra	inwa	ter co	onser	vatio	n tecl	nnologi	ies suc	h as in-	situ	and e	x-situ
	stor	rage,	wat	ter ha	arves	ting,	and	recy	cling	metho	ods, al	ong wi	th d	ry fa	ming
	tecl	hniq	ues l	ike in	nter-t	errace	e and	l inte	r-bun	d land	mana	gement,	for	sustai	nable
	wat	ter re	esour	ce uti	lizati	on.						-			
	CO	4:	Syntł	nesize	the	e co	mpon	ents	of	integra	ited w	atershe	d m	anage	ment,
	inc	orpo	rating	g arab	le lar	nds fo	r agr	icultu	ire an	d hortic	culture	and non	-arat	ole lan	ds for
	fore	estry	, fisl	hery,	and	anim	al h	ısban	dry,	while	assessi	ng the	impa	act of	land
	ma	nage	ment	pract	tices	on wa	atersh	ed hy	ydrolo	ogy.		-	-		
	CO	5: F	Formu	ılate	comp	orehe	nsive	proj	ect p	roposa	ls for	watersh	ed n	nanage	ement
	pro	gran	ns, i	nclud	ing	cost-	benef	ït ar	nalysi	s, and	demo	onstrate	pro	ficiend	cy in
	exe	cuti	ng, m	onito	ring,	and	evalu	ating	wate	rshed 1	orograr	ns throu	igh p	articir	atory
	app	roac	hes i	nvolv	ing v	vaters	shed a	issoci	iation	s, user	groups	, and se	lf-he	lp gro	ups.
Mapping bet	ween	CO	s wit	h POs	s and	PSO	S								
Please refer	map	ping	g of P	PO an	d PS	O fo	r the	style	of m	apping	.				
Mapping be	twee	n Co	os, PO	Os an	d PS	Os		v		<u>.</u>	,				
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Code	rse Code IDE-3.5.7									
Course Title	Drainage Engineering									
Course Cred	lit 2(1+1)									
Objectives	1. Understand the causes and impacts of waterlogging.									
of Course	2. Design and implement surface and subsurface drainage systems.									
	3. Analyze the hydrological and soil parameters relevant to drainage design.									
	4. Evaluate the performance of drainage systems.									
	5. Apply appropriate technologies for reclaiming saline and alkaline soils.									
Course	Theory: Water logging- causes and impacts; drainage, objectives of drainage,									
Content	familiarization with the drainage problems of the state; surface drainage									
	coefficient, types of surface drainage, design of surface drains; sub-surface									
	drainage: purpose and benefits, investigations of design parameters-hydraulic									
	conductivity, drainable porosity, water table; derivation of Hooghoudt's and									
	Ernst's drain spacing equations; design of subsurface drainage system; drainage									
	materials, drainage pipes, drain envelope; layout, construction and installation of									
	drains; drainage structures; vertical drainage; bio-drainage; mole drains; salt									

	balan	ce, rec	clamati	on of	salin	e and	alk	calii	ne soi	ls, le	eaching	g re	equirer	nents,											
	conju	nctive	use of	fresh a	ind sali	ine wa	ter.																		
References	 Conjunctive use of fresh and same water. Practical: In-situ measurement of hydraulic conductivity by single auger hole and inverse auger hole method; Estimation of drainage coefficients; installation of piezometer and observation wells; preparation of iso-bath and isobar maps; determination of drainable porosity; design of surface drainage systems; design of gravel envelop; design of subsurface drainage systems; determination of chemical properties of soil and water; study of drainage tiles and pipes; installation of subsurface drainage system; cost analysis of surface and sub-surface drainage system. Bhattacharya AK and Michael AM. 2013. Land Drainage, Principles, Methods and Applications. Vikas Publication House, Noida (UP). Ritzema H.P.1994 Drainage Principles and Applications, ILRI Publication 16, Second Edition (Completely Revised). Michael AM. and Ojha TP. 2014. Principles of Agricultural Engineering Vol-II 5th Edition. Jain Brothers Publication, New Delhi. Kadam U.S., Thokal R.T., Gorantiwar S.D. and Powar A.G. 2007. Agricultural Drainage-Principles and Practices, Westville Publishing House. FAO Irrigation and Drainage Paper No. 6, 9, 15, 16, 28 and 38. Rome, Italy. 																								
Comme	A 4 41	At the and of the course, learners will be able																							
Outcomes	CO1:	Expla	in the co	concep	ot of w	s will aterlog	ggin	g, i	ts caus	es and	conse	que	nces, a	and the											
	CO2:	Desig	f draina n and la	age. avout s	urface	draina	ngels	svst	ems co	nsider	ing ton	ogr	anhv r	objectives of drainage.											
	CO2: Design and layout surface drainage systems considering topography, rainfall patterns, and soil characteristics																								
	CO3: Apply Hooghoudt's and Ernst's equations to calculate drain spacing for												«p,,,	ainfall											
	CO3:	ns, and Appl	l soil cl y Hoog	ghoudt	's and	Ernst'	s ec	quat	ions to	o calcu	ılate d	rain	spaci	ng for											
	CO3: optim	ns, and Apply al subs Selec	l soil cl y Hoog surface	ghoudt draina	's and ige des	Ernst' ign. priate	's ea dra	quat	ions to	o calcu	ilate d	rain ar	spaci	ng for											
	CO3: optim CO4: consid	ns, and Apply al subs Selec lering	l soil cl y Hoog surface et and soil and	ghoudt draina install d site c	's and ige des appro	Ernst' ign. priate ons.	s ec dra	quat ina	ions to ge ma	o calcu terials,	ilate d pipes	rain , ar	spaci	ng for velopes											
	CO3: optim CO4: consid CO5:	ns, and Apply al subs Selec dering Asses	l soil cl y Hoog surface t and soil and s the fe	ghoudt draina install d site c easibili	's and age des appro conditi ty of b	Ernst' ign. priate ons. io-drai	s ec dra	quat ina; e, n	ions to ge ma nole dr	o calcu terials, rains, a	ilate d pipes nd vert	rain , ar tical	spaci d env	ng for relopes age for											
	CO3: optim CO4: consid CO5: specif CO6:	ns, and Apply al subs Selec dering Asses ic situa Desig	I soil cl y Hoog surface t and soil and s the fe ations. n leact	ghoudt draina install d site c easibili	's and age des appro conditi ty of b	Ernst' ign. priate ons. io-drai	s ec dra	quat iina; ge, n	ions to ge ma nole dr	o calcu terials, rains, a ne and	ilate d pipes nd vert alkalij	rain , ar tical	spaci nd env draina	rainfall ng for relopes age for sed on											
	CO3: optim CO4: consid CO5: specif CO6: salt ba	ns, and Apply al subs Selec dering Asses ic situa Desig alance	I soil cl y Hoog surface t and soil and s the fe ations. n leach and co	draina draina install d site c easibili ning str njunct	's and age des appro conditi- ty of b rategie ive wa	Ernst' ign. opriate ons. io-drai s for re ter use	dra dra inag ecla	quat inaș ge, n imin ncip	ions to ge ma nole dr ng salin oles.	o calcu terials, rains, a ne and	ulate d pipes nd vert alkalin	rain , ar tical ne se	n spaci nd env l draina oils ba	rainfall ng for relopes age for sed on											
	CO3: optim CO4: consid CO5: specif CO6: salt ba CO7:	ns, and Apply al subs Selec dering Asses ic situa Desig alance Analy	l soil cl y Hoog surface t and soil an s the fe ations. n leach and co yse soi	draina draina install d site c easibili ning str njunct	's and age des appro- conditi ty of b rategie ive wa water	Ernst ⁴ ign. opriate ons. io-drai s for re ter use sampl	dra dra inag ecla prin	quat inag ge, n imin ncip to e	ions to ge ma nole dr ng sali: ples. evaluat	o calcu terials, rains, a ne and e drain	ilate d pipes nd vert alkalin nage e	rain , ar tical ne se	n spaci nd env d draina oils ba	rainfall ng for relopes age for sed on ss and											
Manning he	CO3: optim CO4: consid CO5: specif CO6: salt ba CO7: potem	ns, and Apply al subs Selec dering Asses ic situs Desig alance Analy tial sal	I soil cl y Hoog surface t and soil and s the fe ations. n leach and co yse soi <u>inity p</u>	draina draina install d site c easibili ning sti njunct l and roblem	's and age des approconditi ty of b rategie ive wa water	Ernst' ign. priate ons. io-drai s for ra ter use sampl	dra dra inag ecla prin es t	quat inag ge, n imin ncip to e	ions to ge ma nole dr ng salin oles. evaluat	o calcu terials, ains, a ne and e drain	ulate d pipes nd vert alkalin nage e	rain , ar tical ne se	d spaci d env d draina oils ba	rainfall ng for relopes age for sed on ss and											
Mapping be	CO3: optim CO4: consid CO5: specif CO6: salt ba CO7: potem	ns, and Apply al subs Selec dering Asses ic situa Desig alance Analy tial sal Cos, P	I soil cl y Hoog surface t and soil and s the fe ations. n leach and co yse soi inity pr Os and	draina draina install d site c easibili ning stu njunct: 1 and coblem 1 PSO	's and age des appro- conditi ty of b rategie ive wa water as.	Ernst' ign. priate ons. io-drai s for re ter use sampl	dra dra inag ecla prin les t	quat inag e, n imin ncip to e	ions to ge ma nole dr ng salin evaluat	o calcu terials, ains, a ne and e drain	ulate d pipes nd vert alkalin nage e	rain , ar tical ne s	d spaci d env d draina oils ba	ainfall ng for elopes age for sed on ss and											
Mapping be	CO3: optim CO4: consid CO5: specif CO6: salt ba CO7: potem tween	ns, and Apply al subs Selec dering Asses ic situa Desig alance Analy tial sal Cos, P	I soil cl y Hoog surface t and soil an s the fe ations. n leach and co yse soi inity pr Os and	draina draina install d site c easibili ning str njunct: 1 and coblem 1 PSO:	's and age des appro- conditi- ty of b rategie ive wa water is. s	Ernst' ign. priate ons. io-drai s for re ter use sampl	dra dra inag ecla prin les t	quat inag ge, n imin ncip to e	ions to ge ma nole dr ng salit oles. evaluat	o calcu terials, ains, a ne and e drain	ulate d pipes nd vert alkalin nage e	rain , ar tical ne s ffec	I spaci I spaci I draina oils ba tivenes	rainfall ng for relopes age for sed on ss and											
Mapping be	CO3: optim CO4: consid CO5: specif CO6: salt ba CO7: potem tween	ns, and Apply al subs Selec dering Asses ic situa Desig alance Analy tial sal Cos, P	I soil cl y Hoog surface t and soil and s the fe ations. n leach and co yse soi inity pi Os and	draina draina install d site c easibili ning str njunct l and roblem I PSO:	s and age des appro- conditi- ty of b rategie ive wa water s. PO 6	Ernst' ign. priate ons. io-drai s for re ter use sampl	dra dra inag ecla prin les t	quat inag e, n imin ncip to e	ions to ge ma nole dr ng salit oles. evaluat	o calcu terials, rains, a ne and e drain 11	ulate d pipes nd vert alkalin nage e 12	rain, ar , ar tical ne s ffec	i spaci id env draina oils ba tivene: PSC 2	ainfall ng for relopes age for sed on ss and 3											

CO3 CO4 CO5 CO6 CO7

Course Code)	REE -3.5.8									
Course Title		Renewable Power Sources									
Course Cred	it	3 (2+1)									
Objectives of Course	1. 2. a 3.	To provide knowledge of solar energy concept and applications. To impart knowledge of geothermal, ocean and tidal energy and their pplications. To understand the design of wind mills and applications.									
	4. g 5. o	To understand the turbines and generators for small scale hydroelectric eneration. To understand the important parts of a biogas plant, design and principle f bio-diesel.									
Course	Th	eory: Energy consumption pattern & energy resources in India. Renewable									
Content	ene ger ind the thru (CH fue sys anc Pra Per coo hea (th) pla	ergy options, potential and utilization. Biogas technology and mechanisms, ieration of power from biogas, Power generation from urban, municipal and ustrial waste. Design & use of different commercial sized biogas plant. Solar rmal and photovoltaic Systems for power generation. Calculation of energy ough photovoltaic power generation and cost economics, Central receiver nimney) and distributed type solar power plant, OTEC, MHD, hydrogen and l cell technology. Wind farms. Aero-generators. Wind power generation tem. Power generation from biomass (gasification & Dendro thermal), Mini i micro small hydel plants. Fuel cells and its associated parameters. actical formance evaluation of solar water heater; Performance evaluation of solar oker; Characteristics of solar photovoltaic panel; evaluation of solar air meter/dryer; Performance evaluation of biomass gasifier engine system roatless & downdraft), Performance evaluation of a fixed dome type biogas nt; Performance evaluation of floating drum type biogas plant; Estimation of									
	cal usi	orific value of biogas & producer gas; Testing of diesel engine operation ng dual fuel and gas alone.									
References	1. (2	 Garg H.P. 1990. Advances in Solar Energy Technology; D. Publishing Company, Tokyo. Alan L: Farredbruch & R.H. Buse. 1983. Fundamentals of Solar Academic Press, London. Bansal N.K., Kleemann M. & Meliss Michael. 1990. Renewable Energy Sources & Conversion Technology; Tata Mecgrow Publishing Company, New Delhi. Rathore N. S., Kurchania A. K. & N.L. Panwar. 2007. Non-Conventional Energy Sources, Himanshu Publications. Mathur, A.N. & N.S. Rathore. 1992. Biogas Production Management & Utilization. Himanshu Publications, Udaipur. Khandelwal, K.C. & S.S. Mahdi. 1990. Biogas Technology. Rai, G.D. 2013. Non-Conventional Energy Sources, Khanna Publishers, Delhi. Mathur A.N. & N.S. Rathore. Renewable Energy Sources Bohra Ganesh Publications, Udaipur. 									
Course	At	the end of the course, learners will be able									
Outcomes	CC)1: To explain the basic principles of various renewable energy conversion									
	Pro CC ene	D2: To identify various parameters that influences the performance of renewable ergy devices/processes.									

	C	CO3: To undertake the field projects in the area of solar thermal, solar PV, wind,													
	bi	biomass, ocean energy, geothermal etc.													
	C	CO4: To identify suitable renewable source and technology for a given													
	re	requirement To develop the integrated renewable energy technology for													
	de	decentralized power sector.													
Mapping between Cos, POs and PSOs															
CO				PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO 3															
CO4															

Course Co	de	CAE -3.5.9													
Course Tit	le	Skill	Devel	opmen	t Tra	inin	g – I	(Stu	dent	READ	Y) Re	egistra	tion (Only	
Course		5 (0+	-5)												
Credit															
Objectives		• ′	To exp	oose th	ne st	uden	ts to	Ind	ustria	al envi	ronme	nt, wh	ich o	canno	ot be
of Course		:	simulat	ed in th	ne un	ivers	ity?								
		• ′	• To familiarize the students with various Materials, Machines, Processes,												
]	Products and their applications along with relevant aspects of shop												
]	management.												
		• To make the students understand the psychology of the workers, and													
		approach to problems along with the practices followed at factory													
		• ′	To ma	ake th	e st	uden	ts u	nders	tand	the	scope,	funct	ions	and	job
		responsibility-ties in various departments of an organization.													
Course	R	Registration Only –													
Content	St	udent	READ	Y Skil	l Dev	elop	ment	Train	ning -	- I					
Course	A	t the e	nd of t	he cour	se, le	arne	rs wil	ll be a	able						
Outcomes	C	01 : to	o under	stand ii	ndust	rial e	nvirc	onme	nt						
	C	O2 : to	o under	stand v	ariou	s Ma	terial	ls, M	achin	nes, Pro	ocesses	, Produ	icts a	nd the	eir
	ap	plicat	ions al	ong wi	th rel	evan	t aspe	ects o	f sho	p mana	agemei	nt.			
	С	O3 : to	have l	nands-c	on-ex	perie	nce a	ind er	ntrep	reneuri	al skill	S			
Mapping b	etwe	en Co	os, POs	and P	SOs										
CO						P	0							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course Code	e FMPE-3.6.2							
Course Title	Farm Machinery and Equipment-II							
Course Cred	lit $3(2+1)$							
Objectives	1) To get the knowledge about types and components of plant protection,							
of Course	intercultural, harvesting and threshing equipments.							
	2) To get the knowledge about working, adjustments and calibration of ab							
	equipments.							
	3) To familiarise about some special type of equipments used for harvesting of							
	cash crops, root crops, fruits and vegetable crops.							
Course	Theory:							
Content	Introduction to plant protection equipment – sprayers and dusters. Classification							
	of sprayers and sprays. Types of nozzles. Calculations for calibration of sprayer							

	an	d che	emica	l app	olicati	on ra	tes. I	ntrod	uctio	n to in	tercult	ure equ	ipmer	nt. U	se of
	W	eeder	s - m	anual	and p	power	red. S	tudy	of fur	nctional	l requii	rements	of we	eeder	s and
	m	ain co	ompo	nents	. Fan	niliari	zatio	n of :	fertili	zer app	olicatio	n equip	ment.	. Stuc	ly of
	ha	rvesti	ing o	perat	ion –	harv	vestin	g me	thods	, harve	esting	termino	ology.	Stuc	ly of
	m	owers	$s - ty_j$	pes, c	constr	uctio	nal de	etails,	work	king an	d adjus	stments.	Stud	y of s	shear
	ty	pe h	arves	ting	devic	ces –	- cut	ter ł	oar, i	nertial	force	s, cour	nter	balan	cing,
	te	rmino	ology,	cutti	ng pa	ttern.	Study	y of r	eapers	s, binde	ers and	windro	wers -	– prin	ciple
	of	opera	ation	and c	onstr	uction	nal de	etails.	Impo	ortance	of hay	conditi	oning	g, met	hods
	of	hay	condi	tionii	ng, ar	nd cal	culati	ion o	f moi	sture co	ontent	of hay.	Intro	duction	on to
	th	threshing systems – manual and mechanical systems. Types of threshing drums and their applications. Types of threshers- tangential and axial, their constructional details and cleaning systems. Study of factors affecting thresher													rums
	an														
	cc														
	pe		ance		uy or	gran	i con		s, cor	nome i		moutot	ion of	f	on or obino
			onion study	of co	mbin	of III	alerra	and t	w III (roubl	eshooti	ng Str	niputat	baff o	l COII	ionie and
	10	nacity	stutty v cal	culat	ions	Stud	v of	anu i stra	W CC	mbine	ng. Su	vorking	nrin	ciple	and
		pacity.	ction:	al det	ails ?	Study	of rc	of cr	on di	ogers -	nrinci	nle of c	prin	ion 1	olade
	ad	linstm	ent a	and a	nnroa	ch ar	oric	and o	alcul	ation o	f mate	rial ha	ndled	Stuc	ly of
	p	tato a	and g	roun	dnut o	digge	rs. St	udv (of Co	tton ha	rvestir	$\log - Cc$	otton 1	harve	sting
	m	echan	isms.	stud	v of c	otton	pick	ers ar	d stri	ppers.	functio	nal con	pone	nts. S	Study
	of	maiz	ze hai	rvesti	ng co	ombir	nes. In	ntrod	uctior	to ve	getable	es and	fruit l	harve	sting
	eq	uipm	ent ai	nd too	ols.						-				_
	Pı	ractic	al:												
	Fa	Familiarization with plant protection and interculture equipment. Study of sprayers, types, functional components. Study of dusters, types and functional components. Calculations for chemical application rates. Study of nozzle types and													
	sp														
	co														
	sp	read	patte	ern u	sing	patte	rnator	r. Fa	miliai	rization	w1th	manua	anc	1 pov	wered
	W		g equ		nt and	inch	unca	mon 0		rional (compo mand	fortiliz	ar br	on ler	unzer
	ap St	ndv o	of va	rious	type	s of 1	mowe	illall rs r	eaper	reape	r bind	er Stud	ly of	func	tional
		mnor	nents	of n	nowei	rs an	d rea	pers.	Fam	, icape iliariza	tion w	vith thr	eshing	g svs	stems
	cl	eaning	g svst	tems	in thr	esher	s. Ca	culat	ions of	of losse	es in th	reshers.	. Fam	iliariz	zation
	W	ith fu	nctio	nal u	nits c	of Gra	nin co	mbir	ies an	d their	types	. Calcul	lation	s for	grain
	lo	sses i	in a (comb	ine.	Study	of r	oot o	crop d	liggers	and f	amiliari	izatio	n wit	th the
	fu	nctio	nal ur	nits a	nd att	achm	ents.	Fami	liariz	ation w	ith the	e workii	ng of	cotto	n and
	m	aize h	arves	sters.	Fami	liariza	ation	with	veget	able an	d fruit	harvest	ers.		
References	•	Kepn	er RA	A, Ro	y Bar	ger &	EL	Barge	er. Pri	nciples	of Far	m Macl	ninery	/.	
	•	Smith		and I	ЛW	ilkey.	Farn	n Ma	chinei	ry and I	Equipn	nent.			
	•	Sriva	n Clè	ΔC	Farm	ants (niner _. of Ear	y. mM	achin	ary,					
		Lal R	adhe	v and		Datta	л Гаі A ori	cultu	ral Er	ory. Toineer	ino				
Course	A	t the e	end of	f the a	course	e, lear	ners	will b	e abl	e					
Outcomes	C	01: Io	lentif	y typ	es an	d con	npone	ents o	f plar	nt prote	ction,	intercul	tural.	harve	esting
	an	d thre	shing	g equi	pmer	nts.	1		1	1					U
	C	D2: F	Find a	and r	epair	troub	le sh	ootin	g con	ning du	uring t	he ope	eration	n of a	above
	eq	uipme	ents.					-			_				
	C	U3: S	elect	and i	dentif	iy pro	per e	quipn	nents	used fo	r harve	esting of	cash	crops	s, root
Monning	cr	$\frac{\text{ops, f}}{2}$	ruits a	and v	egeta	$\frac{D}{\Omega_{c}}$	ops.								
		en Co	us, PQ	Us an	a PS	US							DC/	<u> </u>	
	1	2	3	4	5	6	7	8	9	10	11	12	1	, 2.	3
CO1	1							0	, ,	10	**				
CO2															
CO3															

Course Cod	e PFE-3.6.3									
Course Title	Post Harvest Engineering of Horticultural Crops									
Course Cree	lit $2(1+1)$									
Objectives of	f 1. To enable the students to understand concepts of handling various									
Course	horticultural produces.									
	2. To apply knowledge of engineering properties for horticultural produce									
	3. To understand various unit operation involved in processing of horticultural									
	and preservation of horticultural produce.									
	4. To become aware about the concept of quality and supply chain management									
Course	Theory									
Content	Importance of processing of fruits and vegetables, spices, condiments and flowers.									
	Characteristics and properties of horticultural crops important for processing,									
	Peeling: Different peeling methods and devices (manual peeling, mechanical									
	peeling, chemical peeling, and thermal peeling), Slicing of horticultural crops:									
	equipment for slicing, shredding, crushing, chopping, juice extraction, etc.,									
	Blanching: Importance and objectives; blanching methods, effects on food									
	(nutrition, colour, pigment, texture), Chilling and freezing: Application of									
	retrigeration in different perishable food products, Thermophilic, mesophilic &									
	requirements of different francing time coloulations slow and fast francing									
	Equipment for chilling and freezing (mechanical & cryogenic). Effect on food									
	Equipment for chilling and freezing (mechanical & cryogenic), Effect on food during chilling and freezing, Cold storage heat load calculations and cold storage									
	during chilling and freezing, Cold storage heat load calculations and cold storage design, refrigerated vehicle and cold chain system, Dryers for fruits and vegetables, Osmodehydration, Packaging of horticultural commodities, Packaging									
	vegetables. Osmodehydration. Packaging of horticultural commodities. Packaging									
	getables, Osmodehydration, Packaging of horticultural commodities, Packaging uirements (in terms of light transmittance, heat, moisture and gas proof,									
	microorganisms, mechanical strength), Different types of packaging materials									
	commonly used for raw and processed fruits and vegetables products, bulk and									
	retail packages and packaging machines, handling and transportation of fruits and									
	vegetables, Pack house technology, Minimal processing, Common methods of									
	storage, Low temperature storage, evaporative cooled storage, Controlled									
	atmospheric storage, Modified atmospheric packaging, Preservation Technology,									
	General methods of preservation of fruits and vegetables, Brief description and									
	advantages and disadvantages of different physical/ chemical and other methods									
	of preservation, Flowcharts for preparation of different finished products,									
	Important parameters and equipment used for different unit operations, Post-									
	narvest management and equipment for spices and flowers, Quality control in Fruit									
	and vegetable processing industry. Food supply chain.									
	Performance evaluation of neeler and slicer. Performance evaluation of juicer and									
	nulner Performance evaluation of blanching equipment Testing adequacy of									
	blanching Study of cold storage and its design									
	Study of CAP and MAP storage. Minimal processing of vegetables. Preparation of									
	value added products. Visit to fruit and vegetable processing industry. Visit to spice									
	processing plant									
References	Arthey, D. and Ashurst, P. R. 1966. Fruit Processing. Chapman and Hall, New									
	York.									
	Pantastico, E.C.B. 1975. Postharvest physiology, handling and utilization of									
	tropical and subtropical fruits and vegetables AVI Pub. Co., New Delhi.									
	Pandey, R.H. 1997. Postharvest Technology of fruits and vegetables (Principles									
	and practices). Saroj Prakashan, Allahabad.									
	Sudheer, K P. and Indira, V. 2007. Post Harvest Engineering of horticultural crops.									
	New India Publishing House.									
	• Girdhari Lal, G. S. Siddappa, G. L. Tandon, 1986. Preservation of Fruits and									
	Vegetables. Indian Council of Agricultural Research									
Course	At the end of the course, learners will be able									
Outcomes										

CO1: Get knowledge of various different types of sorting, grading, peeling, slicing, blanching and other equipment for processing of fruits and vegetables. **CO2**: Identify the suitable equipment, materials, and methods for storage,

processing, packaging, and value addition of fruits and vegetables.

CO3: Understand the technical and management aspects of the operation of fruits and vegetable processing industries.

Mapping between Cos, POs and PSOs															
CO	РО												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course Code	e	SWCE-3.6.4									
Course Title	•	Water Harvesting and Soil Conservation structures									
Course Cred	lit	3(2+1)									
Objectives of Course	•	Comprehend the fundamental principles and significance of water harvesting, delineating its importance in addressing water scarcity issues and exploring various techniques and their classifications based on sourcing, storage, and utilization									
	•	Analyze runoff harvesting methods, distinguishing between short-term (terracing, bunding, rock, and ground catchments) and long-term techniques, elucidating their purposes, design criteria, and operational implications. Evaluate the design, components, and considerations for constructing farm ponds, percolation ponds, and nala bunds, emphasizing site selection, capacity estimation, spillway design, cost estimation, and construction techniques. Appraise the diverse soil erosion control structures, categorizing and comprehending their functional requirements, with a special focus on permanent structures such as check dams, drop, chute, and drop inlet spillways, integrating hydrologic, hydraulic, and structural design, stability analysis, and safety measures. Critically assess the functional characteristics, design criteria, and limitations of different spillways, analyzing their structural components, load considerations energy dissipaters and safety against various hydraulic forces									
		and structural failure modes.									
Course Content	Th tec sho and put res sel spi des con Per chu pro Hy dro dis fur tria pre	teory: Water harvesting -principles, importance and issues. Water harvesting hniques - classification based on source, storage and use. Runoff harvesting – ort-term and long-term techniques. Short-term harvesting techniques - terracing d bunding, rock and ground catchments. Long-term harvesting techniques - rpose and design criteria. Structures - farm ponds - dug-out and embankment aervoir types, tanks and subsurface dykes. Farm pond - components, site ection, design criteria, capacity, embankment, mechanical and emergency illways, cost estimation and construction. Percolation pond - site selection, sign and construction details. Design considerations of <i>nala</i> bunds. Soil erosion ntrol structures - introduction, classification and functional requirements. rmanent structures for soil conservation and gully control - check dams, drop, ute and drop inlet spillways - design requirements, planning for design, design occdures - hydrologic, hydraulic and structural design and stability analysis. 'draulic jump and its application. Drop spillway - applicability, types - straight op, box-type inlet spillways - description, functional use, advantages and actions. Loads on head wall, variables affecting equivalent fluid pressure, angular load diagram for various flow conditions, crushing and tension.									

	Chute spillway - description, components, energy dissipaters, design criteria of
	Saint Antony Falls (SAF) stilling basin and its limitations. Drop inlet spillway -
	description, functional use and design criteria.
	Practical: Study of different types of farm ponds. Computation of storage
	capacity of embankment type of farm ponds. Design of dugout farm ponds. Design
	of percolation pond and <i>nala</i> bunds. Runoff measurement using H-flume.
	Exercise on hydraulic jump. Exercise on energy dissipation in water flow.
	Hydrologic, hydraulic and structural design of drop spillway and stability analysis.
	Design of SAF stilling basins in chute spillway. Hydrologic, hydraulic and
	structural design of drop finet spinway. Design of soil and water conservation
	structures. Field visit to watershed project group treated with soil and water
	conservation measures / structures
References	• Singh Gurmel C Venkataraman G Sastry and B P Joshi 1996 Manual of
Kelefences	Soil and Water Conservation Practices Oxford and IBH Publishing Co. Pvt
	I td New Delbi
	 Michael A M and T P. Oiha 2003 Principles of Agricultural Engineering
	Volume II 4th Edition Jain Brothers, New Delhi
	• Murthy, V.V.N. 2002. Land and Water Management Engineering. 4th
	Edition, Kalvani Publishers, New Delhi.
	• Schwab, G.O., D.D. Fangmeier, W.J. Elliot, R.K. Frevert, 1993. Soil and
	Water Conservation Engineering.4th Edition, John Wiley and Sons Inc. New
	York.
	• Suresh, R. 2014. Soil and Water Conservation Engineering. Standard
	Publisher Distributors, New Delhi.
	• Samra, J.S., V.N. Sharda and A.K. Sikka. 2002. Water Harvesting and
	Recycling: Indian Experiences. CSWCR&TI, Dehradun, Allied Printers,
	Dehradun.
	• Theib Y. Oweis, Dieter Prinz and Ahmed Y. Hachum. 2012. Rainwater
	Harvesting for Agriculture in the Dry Areas. CRC Press, Taylor and Francis
	Group, London.
	• Studer Rima Mekdaschi and Hanspeter Liniger. 2013. Water Harvesting -
	Guidelines to Good Practice.
G	• Centre for Development and Environment, University of Bern, Switzerland.
Course	At the end of the course, learners will be able
Outcomes	COI: Comprehend the foundational principles and significance of water
	narvesting, emphasizing its role in addressing water scarcity issues and
	understanding the diverse classification of water harvesting techniques based on
	CO2: Analyze runoff harvesting methods distinguishing between short term
	(terracing bunding rock and ground catchments) and long term techniques
	evaluating their purposes design criteria and implementation considerations
	CO3: Evaluate the planning design and construction aspects of diverse water
	structures including farm ponds percolation ponds nala bunds and soil erosion
	control structures, considering site selection, capacity estimation, spillway design,
	and stability requirements.
	CO4: Critically assess permanent soil conservation structures and spillway
	designs, demonstrating an understanding of hydrologic, hydraulic, and structural
	design considerations, stability analysis, and safety measures against various
	hydraulic forces and structural failure modes.
	CO5: Analyze different spillway types such as drop, chute, and drop inlet
	spillways, examining their applicability, functional use, advantages,
	disadvantages, and structural components, emphasizing safety aspects and
	limitations of designs like Saint Antony Falls (SAF) stilling basin and drop inlet
	spillways.
Mapping be	tween Cos, POs and PSOs

CO	РО												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course	IDE-3.6.5
Code	
Course Title	Groundwater, Wells and Pumps
Course	3(2+1)
Credit	
Objectives of Course	 Understand the principles of groundwater occurrence and movement. Design and construct open wells and tubewells. Analyze aquifer parameters and assess groundwater potential. Select and install appropriate pumping systems for different well types. Apply artificial groundwater recharge techniques for sustainable water management.
Course Content	Theory: Occurrence and movement of ground water; aquifer and its types; classification of wells, fully penetrating tubewells and open wells, familiarization of various types of bore wells; design of open wells; groundwater exploration techniques; methods of drilling of wells: percussion, rotary, reverse rotary; design of tubewell and gravel pack, installation of well screen, completion and development of well; groundwater hydraulics-determination of aquifer parameters by different method such as Theis, Jacob and Chow's, Theis recovery method; well interference, multiple well systems, estimation of ground water potential, quality of ground water; artificial groundwater recharge techniques; pumping systems: water lifting devices; different types of pumps, classification of pumps, component parts of centrifugal pumps, priming, pump selection, installation and trouble shooting, performance curves, effect of speed on capacity, head and power, effect of change of impeller dimensions on performance characteristics; hydraulic ram, propeller pumps, mixed flow pumps and their performance characteristics; deep well turbine pump and submersible pump.
	Practical : Verification of Darcy's Law; study of different drilling equipments; sieve analysis for gravel and well screens design; estimation of specific yield and specific retention; testing of well screen; estimation of aquifer parameters by Theis method, Coopers-Jacob method, Chow method; Theis Recovery method; well design under confined and unconfined conditions; well losses and well efficiency; estimating ground water balance; study of artificial ground water recharge structures; study of radial flow and mixed flow centrifugal pumps, multistage centrifugal pumps, turbine, propeller and other pumps; installation of centrifugal pump; testing of centrifugal pump and study of cavitations; study of hydraulic ram; study and testing of submersible pump.
References	• Michael AM, Khepar SD. and SK Sondhi. 2008. Water Well and Pumps, 2nd Edition, Tata Mc-Graw
	 Hill. Todd David Keith and Larry W. Mays. 2004. Groundwater Hydrology, 3rd Edition, John Wiley & Sons, New York (International Book Distributing Company Lucknow).

	• Michael AM. and Ojna TP. 2014. Principles of Agricultural Engineering
	Vol-II, 5th Edition. Jain Brothers Publication, New Delhi.
Course	At the end of the course, learners will be able
Outcomes	CO1: Explain the formation and types of aquifers, the different classifications of
	wells, and the factors influencing well yield.
	CO2: Design open wells and fully penetrating tubewells considering aquifer
	characteristics and well yield requirements.
	CO3: Apply groundwater exploration techniques and select appropriate well
	drilling methods based on site conditions.
	CO4: Analyse aquifer parameters using Theis, Jacob, Chow's, and Theis
	recovery methods and assess well interference.
	CO5 : Select and install well screens and gravel packs based on aquifer properties
	and well design considerations.
	CO6: Select and operate appropriate pumping systems for open wells and
	tubewells, considering well depth, water requirements, and energy efficiency.
	CO7: Analyse the performance of centrifugal pumps, including head, capacity,
	efficiency, and cavitation.
	CO8: Evaluate the feasibility and design of artificial groundwater recharge
	structures for sustainable water management.
Monning hot	woon Cos POs and PSOs
a mapping bet	ween Cos, 1 Os anu 1 505

CO]	PO						PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4																
CO5																
CO6																
CO7																
CO8																

Course Code	e	FMPE-3.6.6
Course Title		Tractor and Farm Machinery Operation and Maintenance
Course Cred	lit	2 (0+2)
Objectives	1)	Γo get familiarise with different makes and models of agricultural tractor and
of Course	f	arm machinery.
	2)]	Fo get knowledge about regular and periodical maintenance and safety rules and
	р	recautions to be observed while driving a tractor.
	3) [Γο do the driving practice of tractor alone and tillage tool and their adjustment
	i	n the field.
	4) [To do the practice of replacement of various worn out or broken parts of the
	f	arm implement.
Course	Pr	ractical :
Content	Far	niliarization with different makes and models of agricultural tractors.
	Ide	ntification of functional systems including fuels system, cooling system,
	trar	smission system, steering and hydraulic systems. Study of maintenance points
	to b	be checked before starting a tractor. Familiarization with controls on a tractor.
	Saf	ety rules and precautions to be observed while driving a tractor. Driving
	pra	ctice of tractor. Practice of operating a tillage tool (mould-board plough/ disc
	plo	ugh) and their adjustment in the field. Study of field patterns while operating a
	tilla	age implement. Hitching & De-hitching of mounted and trail type implement to
	the	tractor. Driving practice with a trail type trolley - forward and in reverse

	direction maintee shootin maintee and 12 Preparie machin implem Replac opener Adjusti Replac worksh	maintenance. Tractor starting with low battery charge. Introduction to trouble shooting in tractors. Familiarization with tools for general and special maintenance. Introduction to scheduled maintenance after 10, 100, 300, 600, 900 and 1200 hours of operation. Safety hints. Top end overhauling. Fuel saving tips. Preparing the tractor for storage. Care and maintenance procedure of agricultural machinery during operation and off-season. Repair and maintenance of implements – adjustment of functional parameters in tillage implements. Replacement of broken components in tillage implements. Replacement of furrow openers and change of blades of rotavators. Maintenance of cutter bar in a reaper. Adjustments in a thresher for different crops. Replacement of V-belts on implements. Setting of agricultural machinery workshop.													
References	Refere	workshop. Reference Books													
	• Ghos	 Ghosh RK and S Swan. Practical Agricultural Engineering. 													
	• Blac	 Ghosh KK and S Swan. Practical Agricultural Engineering. Black PO and WE Scahill. Diesel Engine Manual. 													
	• Sout	 Southorn N. Tractor operation and maintenance. 													
	• Jain	• Jain SC and CR Rai. Farm Tractor Maintenance and Repair.													
	• Oper	ators i	nanual	s of ti		rs.	C (
Carrows	• Serv	$\frac{1}{1}$	nuals p	provic		y mai		urers	5.						
Course	At the	end of	the col	urse, I	learne	ers w	111 be a	able	ماہ میں ا	la of o	~			ام سرم م	
Outcomes	COI:		y and	select	suit	able	makes	anc	mode	is of a	igriculti	irai ti	racto	r and	
	1 arm m	Do rec	ry. Wor or	d nor	india	ol m	inton	nnaa	of the	traatar					
		Able to	drive t	iu per	r alor	al III e and	annena Falone	ance	or tillag	e toole	CO4·	Δhle	to re	nlace	
	worn o	ut or h	roken 1	narte	of the	e farn	n imnl	eme	nt unag		. 004.	AUIC	1010	prace	
Mapping be	etween C	los. PC)s and	PSO:	51 uit	- IuII	<u>i inpi</u>	ente							
CO	PO	<i></i> , . C			-							PSO)		
	1 2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1		-		-					-					_	
CO2															
CO3															
CO4															

Course Code		REE -3.6.8								
Course Title		Bio-Energy Systems: Design and Applications								
Course Credi	t	3 (2+1)								
Objectives	1.To	disseminate the importance of bioenergy systems.								
of Course	2.To	acquire knowledge on cutting-edge technologies for conversion of various								
	bic	mass feedstock to bioenergy / biofuel production and their utilization in								
	coi	combustion engines / devices.								
	3.To	design the different bio energy generation systems.								
	On	successful completion of the course, the students would be able to contribute								
	tov	towards providing biomass based sustainable energy solutions.								
Course	The	ory:								
Content	Ferm	nentation processes and its general requirements, An overview of aerobic and								
	anae	robic fermentation processes and their industrial application. Heat transfer								
	proc	esses in anaerobic digestion systems, land fill gas technology and potential.								
	Bion	nass Production: Wastelands, classification and their use through energy								
	plant	tation, selection of species, methods of field preparation and transplanting.								
	Harv	resting of biomass and coppicing characteristics. Biomass preparation								
	techi	niques for harnessing (size reduction, densification and drying). Thermo-								
	chen	nical degradation. History of small gas producer engine system. Chemistry								
	of g	asification. Gas producer – type, operating principle. Gasifier fuels,								
	prop	erties, preparation, conditioning of producer gas. Application, shaft power								

	ş	generation, thermal application and economics. Trans-esterification for biodiesel production. A range of bio-hydrogen production routes. Environmental aspect of													
		bio-en	ergy.	asse	ssmer	t of g	reen	house	gas r	nitigati	on pote	ential.	menta	ai asp	
]	Practi	icals:						8	8	··· r				
		Study	of an	naero	bic fe	rmen	tatior	n syst	em fo	or indus	strial ap	oplication	on, Ir	ntrodu	iction
	C	of insu	ılatio	n and	l diffe	erent t	ypes	of in	sulation	on used	l in ren	ewable	energ	gy gao	lgets,
		Study	of ga	asific	ation	for in	ndusti	rial p	rocess	s heat,	Study of	of biodi	iesel	produ	iction
	ι	init, S	Study	of b	oioma	ss de	nsific	ation	tech	nique (briquet	ting, po	elletiz	zation	, and
	C	cubing	g), Int	tegral	bio e	nergy	v syste	em fo	r indu	strial a	pplicati	ion, Stu	dy of	bio e	nergy
	e	efficiency in industry and commercial buildings, Study and demonstration of energy efficiency in building.													
De	6	energy	British BioGen. 1997, Anaerobic digestion of farm and food processing												
References		1. British BioGen. 1997, Anaerobic digestion of farm and food processing practices- Good practice guidelines London available on													
		practices- Good practice guidelines, London, available on www.britishbiogen.co.UK.													
		www.britishbiogen.co.UK. 2. Butler, S. 2005. Renewable Energy Academy: Training wood energy													
		2. Butler, S. 2005. Renewable Energy Academy: Training wood energy professionals.													
		3. Cer	ntre f	or bio	mass	ener	gy. 1	998.	Straw	for en	ergy pr	oductio	on; Te	echno	logy-
		Env 1 Llor	vironi	ment-		ogy	Avail	able:	www	ens.dk	. Reed	TB and	I Das	A.	
	2	н. па Епе	ergy F	ok ol Found	lation	Pres	Dow S Col	lorado	1.0as	siller E R4	ingine	System	1. 111	e dic	mass
Course	1	At the	end	of the	cour	se, le	arner	s will	be at	ole					
Outcomes		C O1:	To cl	harac	terize	diffe	rent ł	oioma	ss fee	edstock	s based	l on its	const	ituent	s and
	1	proper	rties												
		CO2:	To u	nders	tand	and e	valua	te va	rious	biomas	s pretro	eatment	t and	proce	essing
	t	echni	ques	in ter	ms of	thei	r app	licabi	hty io	or diffe	rent bio	omass t	ype I	or bic	mass
		C O3:		under	stand	the	proce	ess o	f con	ubustio	n. pyrc	olvsis.	gasifi	catior	n and
	1	iquefa	action	1 for	proc	luctio	n of	valu	e ado	ded bio	o-produ	icts, bi	ogas,	bio-	CNG
	٤	genera	ation	etc.											
		CO4.	To	under	rstand	basi	ics o	f bio	fuels,	their	produc	ction te	chno	logies	and
Monning h	otwo	applic	ation	$\frac{s \ln v}{2s \sigma^2}$	ariou	$\frac{1}{2}$	rgy ut	111ty 1	routes	5					
	etwe		JS, I (J s all	u 1 3	03	PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course Cod	CAE-4.7.1									
Course Titl	10- weeks Industrial Attachment /Internship (Student READY)									
Course Cre	t 5 (0+10)									
Objectives of Course	 To provide rural entrepreneurship awareness, practical experience in life situation in rural agriculture and creating awareness to undergrad students about practical agriculture and allied sciences. To build confidence, skill and acquire Indigenous Technical Knowle (ITK) of the locality to prepare the pass-out for self-employment 	real- luate dge								
	• To provide opportunities to acquire nands-on-experience and entrepreneurial skills									
Course	Registration Only –									
Content	0- weeks Industrial Attachment /Internship (Student READY)									
Course Outcomes	e end of the course, learners will be able									

CO1: to have practical experience in real-life situation in rural agriculture and have awareness about practical agriculture and allied sciences **CO2**: to have know how about entrepreneurship.

CO3: to have hands-on-experience and entrepreneurial skills

Mapping	Mapping between Cos, POs and PSOs														
CO				PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course Co	de		CAE-4	CAE-4.7.2											
Course Tit	le		10- we	eks Ex	xperi	entia	l Lea	arnin	ig Oi	n camp	ous (S	tudent	REA	DY)	
Course Cr	edit		5 (0+1	0)											
Objectives		• ′	To pro	vide ru	ral er	ntrepi	eneu	rship	awa	reness	, practi	ical exp	erien	ce in	real-
of Course			life situ	ation i	in rur	al ag	ricult	ure a	nd ci	reating	aware	ness to	unde	rgrad	uate
		1	student	s abou	t prac	ctical	agric	cultu	re an	d allied	l scien	ces.			
		• ′	To buil	d conf	ïdenc	e, sk	ill an	d acc	Juire	Indige	nous T	Technica Contract	al Kn	owled	lge
			(ITK) d	of the l	ocalit	ty to j	prepa	are th	e pas	ss-out f	for self	-emplo	ymen	t	
		• ′	• To provide opportunities to acquire hands-on-experience and												
		entrepreneurial skills													
Course	R	egistration Only –													
Content	10)- wee	ks Exp	erienti	al Le	arnin	g On	a cam	pus	(Stude	nt REA	ADY)			
Course	A	t the e	nd of t	he cou	rse, le	earne	rs wi	ll be	able						
Outcomes	C	01 : to	have]	practic	al exp	perie	nce ii	n real	-life	situati	on in r	ural agr	icultu	ire an	d
	ha	ave aw	varenes	s abou	t prac	ctical	agric	cultu	e and	d allied	l scien	ces			
	C	O2 : to	have l	know ł	now a	bout	entre	epren	eursł	nip.					
	C	O3 : to	have have	hands-	on-ex	perie	ence a	and e	ntrep	oreneur	ial ski	lls			
Mapping b	etwe	een Co	os, POs	s and I	PSOs										
CO						<u> </u>	0	-						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

ourse Code	CAE-4.7.3
Course Title	Skill Development Training – II (Student READY) Registration Only
Course	5 (0+5)
Credit	
Objectives	• To expose the students to Industrial environment, which cannot be
of Course	simulated in the university.
	• To familiarize the students with various Materials, Machines, Processes,
	Products and their applications along with relevant aspects of shop
	management.
	• To make the students understand the psychology of the workers, and
	approach to problems along with the practices followed at factory
	• To make the students understand the scope, functions and job
	responsibility-ties in various departments of an organization.
Course	Registration Only –
Content	Student READY Skill Development Training - II
Course	At the end of the course, learners will be able
Outcomes	CO1 : to understand industrial environment

CO2: to understand various Materials, Machines, Processes, Products and their applications along with relevant aspects of shop management.CO3: to have hands-on-experience and entrepreneurial skills

Mapping	Mapping between Cos, POs and PSOs														
СО			PSO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course Co	ode		CAE-	4.7.4												
Course Ti	tle		Educa	tional	Tou	r (Re	gistr	atior	n only	y)						
Course Cu	redit		2 (0+2													
Objective: Course	s of		•	 in real-life situation in rural agriculture and creating awareness to undergraduate students about practical agriculture and allied sciences. To build confidence, skill and acquire Indigenous Technical Knowledge (ITK) of the locality to prepare the pass-out for self-employment To provide opportunities to acquire hands-on-experience and entrepreneurial skills 												
Course Co	ontent	ţ	entrepreneurial skills Registration Only – Educational Tour of 15 days duration to various industries within and / o outside the state of the University and submission of report on Industria												d / or trial	
Course O	utcom	ies	At the CO1: agricul science CO2: CO3:	end of to have lture an es to have to have	the c prac d hav knov hanc	ourse tical ve aw w ho ds-on	e, lea expe varen w abo -expo	rners rienc ess a out en	will e in r bout ntrepr	be able eal-life practic reneurs d entre	e situat al agrio ship. preneu	ion in r culture rial ski	ural and a lls	allied		
Mapping	betwe	en Co	os, POs	and P	SOs											
CO			1			P	0		.					<u>PSO</u>		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																

Course Code	CAE-4.8.4
Course Title	Project Planning and Report Writing
Course Credit	3(2+1)
Objectives of	• To develop the ability to solve a specific problem right from its
Course	identification and literature review till the successful solution of the
	same.
	• To train the students in preparing project reports and to face reviews
	and viva voce examination.
Course Details	Students in a group of 2 shall work on a topic approved by the head of
	the department under the guidance of a faculty member and prepare a
	comprehensive project report after completing the work to the
	satisfaction of the supervisor.

			The project work is evaluated based on oral presentation and the final project report jointly by a team of examiners including one external examiner.												
Course Ou	itcon	ies	At t	he en	d of t	he co	urse,	learn	ers w	ill be a	ble				
			CO	CO1: Identify agricultural engineering problems reviewing available											
	literature.											-			
CO2: Identify appropriate techniques to analyse complex agricu											ultural				
			engi	ineeri	ng pr	oblen	ns.								
			CO	3: Ap	ply e	engin	eering	g and	l mar	ageme	nt prir	ciples	throu	gh ef	ficient
			hane	dling	of pr	oject,	have	e a cle	ear ide	ea of hi	s/her a	rea of w	vork a	and th	ey are
			in a	posit	ion to	carr	y out	the v	vork i	n a sys	tematic	way			
Mapping b	oetwo	en C	los, P	Os aı	nd PS	Os									
CO			_	PO PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course	SWCE-4.8.1									
Code										
Course Title	Floods and Control Measures									
Course	3(2+1)									
Credit										
Objectives	• Analyze the various causes of flood occurrences and classify									
of Course	floods, including probable maximum flood, standard project									
	flood, and design flood, emphasizing their significance in flood									
	estimation and management strategies.									
	 Evaluate the diverse methods employed in flood estimation such 									
	as rational methods, ampirical techniques, and unit hydrograph									
	as fational methods, empirical techniques, and unit hydrograph									
	methods, and apply statistical tools like log normal, Gumber's									
	extreme value, and log-Pearson type-III distributions for flood									
	frequency analysis.									
	• Assess flood forecasting techniques and flood routing									
	methodologies like channel routing, Muskingum method,									
	reservoir routing, and modified Pul's method, emphasizing their									
	application in predicting and managing flood events.									
	• Examine flood control measures historically and compare									
	structural (storage reservoirs, levees, channel improvements) and									
	non-structural strategies in flood mitigation focusing on gully									
	erosion control structures, ravine control river training works									
	and planning flood control projects									
	• Evaluate the design, construction, and stability aspects of									
	different types of earthen embankments, including hydraulic fill,									
	rolled fill dams, zoned, diaphragm type, and subsurface dams,									
	analyzing their structural integrity against seepage, piping, and									
	failure modes.									
Course	Theory:									
Content	Floods - causes of occurrence. flood classification - probable									
	maximum flood, standard project flood, design flood, flood									
	estimation - methods of estimation; estimation of flood peak -									

rational method, empirical methods, unit hydrograph method. Statistics in hydrology, flood frequency methods - log normal, Gumbel's extreme value, log-Pearson type-III distribution; deptharea-duration analysis. Flood forecasting. Flood routing - channel routing, Muskingum method, reservoir routing, modified Pul's method. Flood control - history of flood control, structural and nonstructural measures of flood control, storage and detention reservoirs, levees, channel improvement. Gully erosion and its control structures design and implementation. Ravine control measures. River training works, planning of flood control projects their economics. Earthen embankments functions, and classification - hydraulic fill and rolled fill dams - homogeneous, zoned and diaphragm type, foundation requirements, grouting, seepage through dams, flow net and its properties, seepage pressure, seepage line in composite earth embankments, drainage filters, piping and its causes. Design and construction of earthen dam, stability of earthen embankments against failure by tension, overturning, sliding etc., stability of slopes - analysis of failure by different methods. Subsurface dams - site selection and constructional features. Check dam - Small earthen embankments types and design criteria. Subsurface dams - site selection and constructional features.

Practical:

Determination of flood stage-discharge relationship in a watershed. Determination of flood peak-area relationships. Determination of frequency distribution functions for extreme flood values using Gumbel's method. Determination of confidence limits of the flood estimates for Gumbel's extreme value distribution. peak Determination of frequency distribution functions for extreme flood values using log-Pearson Type-III distribution. Determination of probable maximum flood, standard project flood and spillway design flood. Design of levees for flood control. Design of jetties. Study of vegetative and structural measures for gully stabilization. Design of gully/ravine control structures and cost estimation. Designing, planning and cost- benefit analysis of a flood control project. Study of different types, materials and design considerations of earthen dams. Determination of the position of phreatic line in earth dams for various conditions, stability analysis of earthen dams against head water pressure, foundation shear, sudden draw down condition etc. Stability of slopes of earth dams by friction circle and other methods. Construction of flow net for isotropic and anisotropic media. Computation seepage different methods. of by Determination of settlement of earth dam. Input-output-storage relationships by reservoir routing. Visit to sites of earthen dam and water harvesting structures.

References	• Michael, A.M. and T.P. Ojha. 2003. Principles of Agricultural
	Engineering. Volume II. 4th Edition, Jain Brothers, New Delhi.

Course Outcomes	 I I<	Murt Engin Sures Stanc Mutre Publi Subra McG Burea Depa Soil Engin Garg Khan Cons Natic e end : Unc imp ique : App I freq : Eva onstra : App I freq : Eva onstra : App I freq : Eva	hy, heeri sh, F lard l eja, shing aman raw- au o rtme Mec neeri , S.K na P ual o truct ons, F d of t lersta porta s. oly va aluat aluat aluat aluat aluat sess t mbar eepag	V.V. ng. 4 R. 20 Public K.N. g Co ya, I Hill f Re nt of chani ng). C. 20 Public n Sn ion. Come che c and t nce ariou cy an e dif profi- ing v he dif ge an	V.N. Ith E)14. isher isher , Ne X. 20 Publeclar The cs a Stan 14. S shers nall Food all shers nall food structor vork esign call od structor vork esign all pool od structor Ne Stan Call Stan St	20 ditio Soil Dis 90. ishir natio rior, and dard Soil col Earth 1 and col Earth 1 and Col Col Col Col Col Col Col Col Col Col	02. n, K and tribu Appl ork, Engin g Co on. 1 Was Foun Pub Mec . Lto n Da d Ag arner s and d e stima d dej ood n pre- trol l app nstru substa	Lan alyar alyar alyar Wa tors, ied Delh neeri o., No 987. hing ndati lishe hanic l., N ricul s wil class stima ation oth-a forece edicti mea roacl ctior urfac lure	id ar ii Public ater C New I Hydro ii. ng Hy ew De besi ton DC on Er rs Disics and ew De Con Er rs Disics and ew De A Gu ture C 1 be at sification methor rea-du casting and sures, en n, and e dam modes	nd W lishers Conser Delhi. Delhi. Dology. drolog lhi. gn of C, USA nginee tributo Foun elhi. S nide to Drgani: Dle ions of and ods an uratior g and d man disti nghas stabili	Vater s, New vation Tata gy. 3rd f Sma A. Aro ering ors, De dation f flood flood flood d station aging inguish izing e ity con-	Max Del Eng McC I Edi I Edi I Edi I Edi I Dra, K (Geo elhi. Eng of th s, rec man stica smer stica smer flood ning rosic aside: their	nager hi. ginee Graw tion, tion, ams. C.R. 2 otechn ginee im. 2 esign ne Ur cogni nager l tool nts. chnic d eve betw on co ration	ment ring. -Hill Tata US 014. nical ring. 010. and nited izing ment s for ques, nts. ween ntrol ns of grity
Mapping betw	veen C	os, Po	Os an	d PS	Os	DO							DCC	
	2	2	1	5	6	<u>PO</u>	Q	0	10	11	12	1	<u>PSO</u>	2
	4	3	4	3	U	/	0	9	10	11	14		4	3
CO_2														
CO_2														
CO5														

Course	SWCE-4.8.2
Code	
Course Title	Wasteland Development
Course	3 (2 + 1)
Credit	
Objectives of Course	• Analyze the concept of land degradation, its classification concerning various regions (arid, semiarid, humid, and sub-humid), and assess the

	factors leading to denuded range lands and wastelands, emphasizing their mapping and planning for development
	 Evaluate conservation structures such as gully stabilization, ravine rehabilitation, sand dune stabilization, and water harvesting methods, emphasizing their role in combating land degradation and facilitating wasteland reclamation and sustainable development.
	• Explore afforestation techniques including agro-horti-forestry-silvipasture methods, and optimal land use options like forage and fuel crops, examining their socioeconomic constraints and benefits in reclaiming and developing wastelands.
	 Assess wasteland development strategies in diverse geographical areas including hills, semi-arid regions, coastal areas, water-scarce zones, and initiatives for reclaiming waterlogged and salt-affected lands, incorporating micro-irrigation practices and sustainable management approaches. Critically analyze government policies, participatory approaches, and the formulation of proposals for wasteland development, emphasizing benefit-cost analysis and considering socio-economic perspectives and sustainable solutions during drought situations.
Course	Theory
Content	Land degradation – concept, classification - arid, semiarid, humid and sub-humid regions, denuded range land and marginal lands. Wastelands - factors causing, classification and mapping of wastelands, planning of wastelands development - constraints, agro-climatic conditions, development options, contingency plans. Conservation structures - gully stabilization, ravine rehabilitation, sand dune stabilization, water harvesting and recycling methods. Afforestation - agro-horti-forestry-silvipasture methods, forage and fuel crops - socioeconomic constraints. Shifting cultivation, optimal land use options. Wasteland development – hills, semi-arid, coastal areas, water scarce areas, reclamation of waterlogged and salt-affected lands. Mine spoils- impact, land degradation and reclamation and rehabilitation, slope stabilization and mine environment management. Micro-irrigation in wastelands development. Sustainable wasteland development - drought situations, socio-economic perspectives. Government policies. Participatory approach. Preparation of proposal for wasteland development and benefit-cost analysis.
	Practical:
	Mapping and classification of wastelands. Identification of factors causing wastelands. Estimation of vegetation density and classification. Planning and design of engineering measures for reclamation of wastelands. Design and estimation of different soil and water conservation structures under arid, semiarid and humid conditions. Planning and design of micro-irrigation in wasteland development. Cost estimation of the above measures / structures. Visit to wasteland development project sites.
References	 Abrol, I.P., and V.V. Dhruvanarayana. 1998. Technologies for Wasteland Development. ICAR, New Delhi. Ambast, S.K., S.K. Gupta and Gurcharan Singh (Eds.) 2007. Agricultural Land Drainage - Reclamation of Waterlogged Saline Lands. Central Soil Salinity Research Institute, Karnal, Haryana. Hridai Ram Yadav. 2013. Management of Wastelands. Concept Publishing Company. New Delhi. Karthikeyan, C., K. Thangaraja, C. Cinthia Fernandez and K. Chandrakandon. 2009. Dryland Agriculture and Wasteland Management. Atlantic Publishers and Distributors Pvt. Ltd., New Delhi.

		• •	Rattar	ı Lal	and E	3.A. S	Stewa	rt (Ed	1.). 20	015. So	oil Man	agemen	t of S	Smallh	nolder
		A	Agric	ulture	. Vol	ume	21 o	f Àdv	ances	s in So	il Scier	nce. CF	RC Pi	ess. T	avlor
		а	ind Fi	rancis	Grou	up. Fl	lorida	a. USA	А.					,	2
		• F	Rober	t Ma	liva a	and T	homa	as Mi	ssime	r. 2012	2. Arid	Lands V	Vater	Evalı	ation
		2	and N	lanag	emen	t. Spi	ringe	r Heid	lelher	g. Nev	v York	Lunds	, acor	<u>L</u> , uit	aution
		• 5	Swam	inath	an N	M S	2010	Sci	ence	and I	ntegrate	ed Rura	il De	velon	ment
		(Conce	nt Pr	ullish	ing ('omn	anv (l	P) I td	l Delh	ni	cu ituit		reiop	ment.
		• 1	Che F	'nergy	ionsh i and	Reso	urces	any (i a Ineti	tute	2003 1	n. Lookin	a Back	to Th	ink A	head-
		Green India 2007 Growth with Resource Enhancement of Environment and													
		Noture New Delbi													
		Nature. New Delli.													
		• virinani, S.M. (Ed.). 2010. Degraded and wastelands of India: Status and Spatial Distribution ICAP New Delbi													
Course		At the	e end	of the		se. le	arnei	rs wil	be a	ble					
Outcomes		CO1:	Unde	erstan	d the	cond	cept of	of lan	d deg	radatio	on and	wastela	nds.	profic	ientlv
		classi	fying	and	mapr	oing t	hem	based	lon	diverse	e agro-	climatic	cond	litions	s, and
	j	denti	fving	cons	traint	s and	deve	lopm	ent or	otions.	0				,
		CO2:	Eval	uate a	and a	pply	conse	ervati	on sti	ucture	s and r	eclamat	ion r	netho	ds for
		gully stabilization, ravine rehabilitation and dune stabilization, and water													
	i	harves	sting,	dem	onstra	ating	their	effect	ivene	ess in c	ombati	ng land	degr	adatio	n.
		CO3:	Anal	yze a	ffore	statio	n tec	hniqu	es an	d optir	nal lan	d use of	otion	s, incl	uding
		agro-ł	norti-	- forest	rv n	netho	ds a	ndf	orage	/fuel (crops.	assessi	ng ti	heir s	socio-
		econo	mic o	const	raints	and	pote	ntial	for re	claimi	ng and	develo	ping	waste	elands
		sustai	nably	· · · · · · · · · · · · · · · · · · ·			r				8		r8		
		CO4:	Asse	ess di	verse	wast	eland	1 dev	elopn	nent st	rategies	s. incluc	ling 1	reclan	nation
		appro	aches	for	varie	d geo	ograp	hical	areas	and r	nine sr	oils. in	tegra	ting n	nicro-
	j	rrigat	ion p	ractio	es an	d sus	taina	ble m	anage	ement i	in drou	ght situa	ations	5.	
		CO5:	Criti	cally	appra	ise g	overr	iment	polic	cies, pa	rticipat	tory app	roacl	nes. ar	nd the
	1	formu	latio	1 of n	ropos	sals fo	or wa	stela	nd dev	velopm	nent. sh	owcasir	ig pro	oficier	ncv in
		condu	cting	bene	fit-co	st an	alvse	s and	incor	poratir	ng socio	o-econo	mic r	erspe	ctives
	t	for su	staina	able s	olutio	ons.	5-20			1	9		- 1	r	
Mapping b	etwe	en C	os, P	Os ar	d PS	Os									
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course	SWCE-4.8.3
Code	
Course Title	Information Technology for Land and Water Management
Course	3(2+1)
Credit	
Objectives of Course	• Evaluate the role of Information Technology (IT) in natural resources management, emphasizing its potential for efficient data handling, analysis,
	and decision-making processes.
	• Analyze existing systems and organizations involved in land and water management, focusing on information generation, multimedia application, web technology, and networking tools to comprehend their functionalities and limitations.
	• Explore the development of database concepts for effective natural resources
	management, employing rational data management systems, object-oriented

	 approaches, and decision support systems, along with expertise in remote sensing, GIS, GPS, and multi-sensor data loggers. Examine agricultural information management systems, their utilization of mathematical models and programs, and the overview of software packages relevant to natural resource management, emphasizing video-conferencing for scientific information exchange. Assess problems, prospects, and future advancements in new information and communication technology within the context of natural resource management, focusing on decision-making systems and expert systems' application potential.
Course Content	Theory Concert of Information Tasknalogy (IT) and its application notantial. Bala of IT
	Concept of information Technology (11) and its application potential. Role of 11 in natural resources management. Existing system of information generation and organizations involved in the field of land and water management. Application and production of multimedia. Internet application tools and web technology. Networking system of information. Problems and prospects of new information and communication technology. Development of database concept for effective natural resources management. Application of remote sensing, geographic information system (GIS) and GPS. Rational data base management system. Object oriented approaches. Information system, decision support systems and expert systems. Agricultural information management systems - use of mathematical models and programmes. Application of decision support systems, multi sensor data loggers and overview of software packages in natural resource management. Video-conferencing of scientific information.
	Practical
	Practical: Multimedia production. Internet applications: E-mail, voice mail, web tools and technologies. Handling and maintenance of new information technologies and exploiting their potentials. Exercises on database management using database and spreadsheet programmes. Usage of remote sensing, GIS and GPS survey in information generation and processing. Exercises on running computer software packages dealing with water balance, crop production, land development, land and water allocation, watershed analysis etc. Exercises on simple decision support and expert systems for management of natural resources. Multimedia production using different softwares. Exercises on development of information system on selected theme(s). Video-conferencing of scientific information.
References	 Climate-Smart Agriculture – Source Book. 2013. Food and Agriculture Organization, Rome. Daniel P. Loucks and Eelco van Beek. 2005. Water Resources Systems Planning and Management - An Introduction to Methods, Models and Applications. UNESCO, Paris. Dipak De and Basavaprabhu Jirli (Eds.). 2010. Communication Support for Sustainable Development. Ganga Kaveri Publishing House, Varanasi – 221001. FAO. 1998. Land and Water Resources Information Systems. FAO Land and Water Bulletin 7, Rome. Fuling Bian and Yichun Xie (Eds.). 2015. Geo-Informatics in Resource Management and Sustainable Ecosystem. Springer, New York. ICFAI Business School (IBS). 2012. Information Technology and Systems. IBS Centre for Management Research. Hyderabad

		1	1	() ()	1'	1 77	1	٦.	•	2012	1	r 1 X	57 4	г 1	<i>.</i> •
		• Robert Maniya and Thomas Missinier. 2012. And Lands water Evaluation													
		8	and M	lanag	emen	t. Env	viron	menta	Il Scie	ence. S	pringei	, New	York.		_
		•	Sarva	nan.	R. 2	011.	Info	rmati	on ar	nd Co	mmuni	cation	Tech	nolog	y for
		1	Agric	ulture	and	Rura	l Dev	velopi	nent.	New I	India P	ublishir	ig Ag	gency,	New
		Delhi.													
		• Soam, S.K., P.D. Sreekanth and N.H. Rao (Eds.). 2013. Geospatial													
		- -	Technologies for Natural Resources Management. New India Publishing												
		1	Agenc	cy, De	elhi.						-				-
Course		At the	e end	of the	e cour	se, le	arner	s will	be al	ole					
Outcomes		CO1:	Unde	erstan	ding	IT C	once	pts ai	nd Ro	ole in l	Resour	ce Man	agen	nent C	bain a
		comp	rehen	sive	unde	rstand	ling	of Ir	form	ation '	Techno	ology c	oncei	ots ar	nd its
		oivota	al role	in m	anagi	ing na	atural	resol	irces	efficie	ntly and	d sustai	nably		
		CO2	Annl	licatio	on Pr	oficie	encv	of IT	in N	atural	Resou	rce Mai	nager	nent /	Annly
		vario	1 1991 16 IT	tools	and	meth	odolo	ories	for th	ne effe	ctive m	anagen	ient i	of lan	d and
		water	resol	irces	inch	uding	mul	timed	ia nro	oductic	on data	abase de	velo	nmen	t and
		vater stilize	tion (of ror	note c	aung	G	Inneu S an		suuciic s	<i>m</i> , uau	ibase u		pmen	i, and
		~ <u>~</u> ~2.	Infor	moti	note s	votom	a Do	uolon	mont	J. for D	acourac	Monor	Tomo	nt Da	valon
		COS. mormation Systems Development for Resource Management Develop													
				I Sys	biost	and	ualat	Jases,	appi	lying i	ational	ualaba ficient i	ise II	lanage	
		princi	pies a	and o	bject-	orien	ted aj	pproa	cnes	lanorec	1 for ef	ficient i	iatura	ai resc	burces
	1	mana	geme	nt.						1 5					
		CO4:	Utiliz	zing I	Jec1s1	on Su	uppor	t Sys	tems	and Ex	pert Sy	vstems			
		Utiliz	e dec	ision	supp	ort sy	ystem	is, ex	pert s	systems	s, and	agricult	ural	inform	nation
	1	mana	geme	nt sys	tems	invol	ving	mathe	emati	cal mo	dels, m	ulti-sen	sor d	ata lo	ggers,
	;	and so	oftwa	re pao	ckage	s for	effect	tive d	ecisic	on-mak	ting in 1	resource	e mar	nagem	ent.
		CO5:	Com	muni	cation	n and	Coll	abora	tion i	in Reso	ource N	Aanager	nent	Effec	tively
	1	utilize	e inte	ernet	appli	icatio	n too	ols, v	veb 1	technol	logy, a	and vid	eo-co	onfere	ncing
	1	netho	ods to	disse	emina	te sci	entifi	c info	ormati	ion and	l facilit	ate colla	abora	tion a	mong
	:	stakeł	noldei	rs in r	natura	l reso	ources	s man	agem	ent.					
Mapping b	oetwe	en C	os, PO	Os an	d PS	Os									
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Code	SWCE-4.8.4
Course Title	Remote Sensing and GIS Applications
Course	3(2+1)
Credit	
Objectives of Course	 Acquire a holistic understanding of remote sensing, encompassing its components, limitations, and GIS techniques for land and water resource assessment and monitoring. Develop practical proficiency in utilizing remote sensing and GIS tools for integrated data analysis, aiding informed decision-making in resource management practices. Gain competence in aerial photography principles, stereoscopic vision, and interpretation, facilitating efficient spatial data acquisition and analysis. Master image analysis techniques, including restoration, enhancement, and classification, enabling extraction of meaningful insights from remotely sensed data.

	• Apply combined knowledge of remote sensing and GIS to efficiently														
	manage land and water resources, employing integration and decision														
	support systems for sustainable practices.														
Course	Basic component of remote sensing (RS), advantages and limitations of RS,														
Content	possible use of RS techniques in assessment and monitoring of land and water														
	resources; electromagnetic spectrum, energy interactions in the atmosphere and														
	with the Earth's surface; major atmospheric windows; principal applications of														
	different wavelength regions; typical spectral reflectance curve for vegetation,														
	soil and water; spectral signatures; different types of sensors and platforms;														
	contrast ratio and possible causes of low contrast; aerial photography; types of														
	aerial photographs, scale of aerial photographs, planning aerial photography- end														
	lap and side lap; stereoscopic vision, requirements of stereoscopic photographs;														
	airphoto interpretation-interpretation elements; photogrammetry- measurements														
	on a single vertical aerial photograph, measurements on a stereo-pair-vertical														
	satellite remote sensing multispectral scanner, whishbroom and push broom														
	scanner: different types of resolutions: analysis of digital data image restoration:														
	image enhancement: information extraction image classification unsupervised														
	classification supervised classification important consideration in the														
	identification of training areas, vegetation indices: microwave remote sensing.														
	GI Sand basic components, different sources of spatial data, basic spatial entities,														
	major components of spatial data, Basic classes of map projections and their														
	properties, Methods of data input into GIS, Data editing, spatial data models and														
	structures, Attribute data management, integrating data (map overlay) in GIS,														
	Application of remote sensing and GIS for the management of land and water														
	resources.														
References	• Reddy Anji, M. 2006. Textbook of Remote Sensing and Geographical														
	Information Systems. BS Publications, Hyderabad.														
	• Elangovan, K. 2006. GIS Fundamentals Applications and														
	Implementations. New India Publication Agency, New Defin.														
	Universities Press (India) Private Limited Hyderabad														
	• Jensen J.R. 2013 Remote Sensing of the Environment: An Earth														
	Resource Perspective. Pearson Education Limited, UK.														
	• Lillesand, T., R.W. Kiefer and J. Chipman. 2015. Remote Sensing and														
	Image Interpretation. 7th Edition, John Wiley and Sons Singapore Pvt.														
	Ltd., Singapore.														
	• Sabins, F.F. 2007. Remote Sensing: Principles and Interpretation. Third														
	Edition, Waveland Press Inc., Illinois, USA.														
	• Sahu, K.C. 2008. Text Book of Remote Sensing and Geographic														
	Information Systems. Atlantic Publishers and Distributors (P) Ltd., New														
	Delni.														
	• Shuitz, G.A. and E.T. Engman. 2000. Remote Sensing in Hydrology and Water Management. Springer														
	New York														
Course	At the end of the course, learners will be able														
Outcomes	CO1: Understand the foundational principles and applications of remote sensing														
	techniques for assessing and monitoring land and water resources														
	CO2: Analyze energy interactions within the electromagnetic spectrum and														
	comprehend sensor technologies used in remote sensing, aerial photography, and														
	satellite-based observations.														
	CO3: Apply photogrammetric principles, aerial photography techniques, and														
	interpretative skills to extract meaningful information for land and water resource														
	management.														
		CO4:	CO4: Evaluate satellite remote sensing technologies, digital image analysis												
-----------------------------------	---	-------	---	---------	--------	--------	-------	-------	--------	----------	----------	--------	---------	--------	--------
	1	metho	ods, a	and c	lassif	icatio	n tec	hniqu	ies fo	or proc	essing	and ir	nterpre	eting	Earth
		obser	vatio	n data	ι.										
		CO5:	Der	nonst	rate	profi	cienc	y in	Geo	graphic	lnfor	mation	Sys	tem	(GIS)
	1	funda	ment	als, sp	patial	data	mana	geme	nt, ma	ap proje	ections,	and th	eir ap	plicat	ion in
		optim	ptimizing land and water resource management strategies.												
Mapping between Cos, POs and PSOs															
СО							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course	IDE-4.8.5
Code	
Course Title	Management of Canal Irrigation System
Course	3(2+1)
Credit	
Objectives	1. Understand the principles and benefits of canal irrigation systems.
of Course	2. Analyze the performance of canal networks and identify areas for
	improvement.
	3. Design and manage irrigation canals based on water requirements and
	silt theory principles.
	4. Implement efficient water distribution methods like warabandhi and
	canal schedules.
	5. Evaluate the need and design of canal linings, escapes, and other
	essential structures.
Course	Theory: Purpose benefits and ill effects of irrigation; typical network of canal
Content	irrigation system and its different physical components; canal classification
	based on source of water, financial output, purpose, discharge and alignment;
	canal alignment: general considerations for alignment; performance indicators
	for canal irrigation system evaluation, Estimation of water requirements for
	canal command areas and determination of canal capacity; water duty and delta,
	relationship between duty, base period and delta, factors affecting duty and
	method of improving duty; silt Theory: Kennedy's theory, design of channels by
	Kennedy's theory, Lacey's regime theory and basic regime equations, design of
	channels by Lacey's theory, maintenance of unlined irrigation canals,
	measurement of discharge in canals, rostering (canal running schedule) and
	warabandhi, necessity of canal lining: advantages and disadvantages, types of
	canal lining and desirable characteristics for the suitability of lining materials;
	design of lined canals; functions of distributary head and cross regulators; canal
	falls, their necessity and factors affecting canal fall; sources of surplus water in
	canals and types of canal escapes; requirements of a good canal outlet and types
	of outlet.
	Practical: Estimation of water requirement of canal commands; determination
	of canal capacity; layout of canal alignments on topographic maps, drawing of
	canal sections in cutting, full banking and partial cutting and partial banking;
	determination of longitudinal section of canals; design of irrigation canals based
	on silt theories; design of lined canals; formulation of warabandhi; Study of canal
	outlets, regulators, escapes and canal falls.

References		•	 Arora, K.R. 2001. Irrigation, Water Power and Water Resources Engineering. Standard Publishers Distributors, Delhi. Garg S. K. 2014. Irrigation Engineering and Hydraulic Structures, Khanna Publishers New Delhi. Sahasrabudhe SR. 2011. Irrigation Engineering and Hydraulic structures. SK Kataria & Sons Reprint 2015. 												
Course	1	At the	end	of the	cour	se, lea	arners	s will	be ab	le					
Outcomes		C O1:	Expl	ain th	e pur	pose,	bene	fits, a	nd po	otential	drawb	acks of	cana	l irrig	ation
	S	systen	ems, including their components and classification.												
	•	CO2:	2: Analyze water requirements for canal command areas and determine the												
	1	equir	aired canal capacity using appropriate methods.												
		C Ō3:	03: Apply and compare silt theories like Kennedy's and Lacey's for efficient												
	C	anal	nal design and maintenance.												
		C O4:	Desi	gn an	d imp	oleme	nt ros	sters (canal	l runnir	ng sche	dules)	and v	varab	andhi
	f	or eq	uitabl	le and	effic	ient v	vater	distri	bution	n.	-				
		C O 5:	Eval	uate tl	he nee	ed for	and o	lesign	n of ca	anal lin	ing, fal	ls, esca	pes, c	outlets	s, and
	0	other	struct	ures c	consid	lering	tech	nical	and e	conom	ic facto	ors.			
Mapping be	etwee	n CO	s wit	h POs	and	PSOs	•								
Mapping b	etwe	en Co	os, PO	Ds an	d PS	Os									
11 8			/												
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															

CO3

CO4														
CO5														
														-
Course Cod	0	T	DF <i>1</i>	86										
Course Cou			DE-4 Jinor	.0.0 • Inni	ratio	and	Con	mon	d Aros	Dovol	onmon	+		
Course True	e dit	Γ	$\frac{11101}{3(2+1)}$	<u> </u>	gatio	i anu		man	u Alta	Devel	opmen	L		
Objectives	1	Unde	lerstand the importance and types of minor irrigation systems											
of Course	1.	Desic	n and	i ille i i man	age li	ft irri	o anu	n and	tank ii	rigatio	n syster	ystem ne	5.	
of Course	2.	2. Design and manage int inigation and tank inigation systems. 3. Implement command area development (CAD) programs for improved												
	5.	water management.												
	4.	4. Analyze water productivity and identify strategies for enhancement.												
	5.	5. Promote farmer participation in irrigation development and management.												
		. Tromote farmer participation in migation development and management.												
Course	Theory	heory: Factors affecting performance of irrigation projects; types of minor												
Content	irrigati	on sys	stems	in Ir	ndia;	lift ir	rigati	on sy	stems:	feasib	ility, ty	pe of	pum	ping
	stations	s and	their	site s	electi	on, d	esign	of lif	ft irriga	tion sy	stems;	tank	Irriga	tion:
	groupin	ng of	tanks	, stor	age o	capac	ity, s	upply	works	s and s	luices;	comr	nand	area
	develop	pment	(CA	D) p	rogra	mme-	- com	npone	ents, ne	ed, sco	ope, an	d dev	velopi	ment
	approa	ches,	histo	orical	pers	pectiv	ve, c	omm	and a	rea de	velopm	ent a	author	rities
	functio	ns and	d resp	onsil	oilitie	s; on	farm	deve	elopme	nt worl	ks, recl	amati	on we	orks,
	use of	remot	e sen	sing t	techn:	iques	tor (works;	water	produc	tivity:	conc	cepts
	and m	easure	es to	r enl	nancı	ng w	vater	prod	uctivity	; Farr	ners' p	bartici	patio	n in
	comma	ind are	ea dev	velopi	ment;									
	Practic	ol• D	ranar	ation	of c	omm	and a	read	lovelor	ment 1	avout	nlan	Irrig	ation
	water 1	equir	emen	a = 10 = 10	or C	Prer	anu a paratia	nca t on of	irrigat	tion sel	hedules	· Plan	nning	and
	lavout	of wat	erco	nveva	nce s	vstem	n: des	ign of	fsurplu	s weir	of tanks	$\frac{1}{3}$ dete	ermina	ation
	of storage capacity of tanks; design of intake pipe and pump house.													

References		 Arora, K.R. 2001. Irrigation, Water Power and Water Resources Engineering. Standard Publishers Distributors, Delhi. Garg S. K. 2014. Irrigation Engineering and Hydraulic Structures, Khanna Publishers New Delhi. Michael A.M. 2012. Irrigation: Theory and Practice. Vikas Publishing Vikas Publ. House New Delhi. Sahasrabudhe SR. 2011. Irrigation Engineering and Hydraulic structures. SK Kataria & Sons Reprint 2015. 													
Course Outcomes Mapping b	At CO dif CO sta CO an CO str CO str CO str CO etwe	the e O1: fferer O2: A ation O3: A d slut O3: A ogran O4: 1 ogran O5: D stems O6: A rategi O7: E entify en C	end o Expla atiate Analy selec Asses ice de Expla s, and S, and S	f the c ain t betw se the tion a s tan esign. an the ghlig op co l farm yse v r imp in the <u>s to e</u> Os ar	cours he fa een n e feas ind sy k irri hting mman deve vater roven e role <u>ncour</u> d PS	e, lea actors najor ibility stem gation their nd are clopm prod nent. of fat	rners affe and r y and layou n syst es an histo ea lay nent v uctiv rmer heir i	will l cting ninor desig it. cems, d con rical out pl vorks ity, i partic <u>nvolv</u>	be abl perf irriga n lift inclu mpon- conte ans, i dentif	e forman ation sy irrigati ding s ents o xt and rrigation fy fact on in cont.	ce of ystems. on syst torage f comm objection sche cors aff omman	irrigation ems, in capacity nand an ves. dules, v fecting d area of	on pr cludir y, sup rea de vater c it, ar develo	rojects ng pur oply v evelop conve nd pr	s and mping vorks, oment yance opose nt and
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-		-						-						_
CO2															
CO3															
CO4															
CO5															
C06															
CO7															

Course Code	e IDE-4.8.7
Course Title	Precision Farming Techniques for Protected Cultivation
Course Cred	lit 3(2+1)
Objectives	1. Understand the principles and benefits of protected cultivation.
of Course	2. Design and construct greenhouses and manage their environment
	(light, temperature, humidity, CO2).
	3. Implement precision irrigation and fertigation techniques for optimal
	plant growth.
	4. Employ appropriate methods for pest and disease control in greenhouse
	environments.
	5. Select suitable crops for protected cultivation and manage their
	production efficiently.
	6. Conduct economic analysis of greenhouse projects.
Course	Theory: Protected cultivation: Introduction, History, origin, development,
Content	National and International Scenario, components of green house, perspective,
	Types of green houses, polyhouses /shed nets, Cladding materials, Plant
	environment interactions – principles of limiting factors, solar radiation and
	transpiration, greenhouse effect, light, temperature, relative humidity, carbon

	dioxide enrichment, Design and construction of greenhouses – site selection, orientation, design, construction, design for ventilation requirement using exhaust fan system, selection of equipment, Greenhouse cooling system – necessity, methods – ventilation with roof and side ventilators, evaporative cooling, different shading material fogging, combined fogging and fan-pad cooling system, design of cooling system, maintenance of cooling and ventilation systems, pad care etc. Greenhouse heating – necessity, components, methods, design of heating system. Root media – types – soil and soil less media, composition, estimation, preparation and disinfection, bed preparation. Planting techniques in green house cultivation. Irrigation in greenhouse and net house – Water quality, types of irrigation system, components, design, installation, and material requirement. Fogging system for greenhouses and net houses – introduction, benefits, design, installation, and material requirement. Maintenance of irrigation and fogging systems. Fertilization – nutrient deficiency symptoms and functions of essential nutrient elements, principles of selection of proper application of fertilizers, fertilizer scheduling, rate of application of fertilizers, methods, automated fertilizer application. Greenhouse climate measurement, control and management. Insect and disease management in greenhouse and net houses. Selection of crops for greenhouse cultivation, major crops in greenhouse – irrigation requirement, fertilizer management, cultivation, harvesting and post-harvest techniques; Economic analysis.
	Practical: Estimation of material requirement for construction of greenhouse ; Determination of fertilization schedule and rate of application for various crops; Estimation of material requirement for preparation of root media; Root media preparation, bed preparation and disinfections; Study of different planting techniques ; Design and installation of irrigation system; Design and installation of fogging system ; Greenhouse heating; Study of different greenhouse environment control instruments; Study of operation maintenance and fault detection in irrigation system; Study of operation maintenance and fault detection in fogging system; Economic analysis of greenhouses and net houses; Visit to greenhouses.
References	 Singh Brahma and Balraj Singh. 2014. Advances in protected cultivation, New India Publishing Company. Sharma P. 2007. Precision Farming. Daya Publishing House New Delhi.
Course Outcomes	 At the end of the course, learners will be able CO1: Explain the concepts of protected cultivation, its history, types of greenhouses, and their components. CO2: Design and construct greenhouses considering site selection, orientation, construction materials, and ventilation requirements. CO3: Implement and manage greenhouse cooling and heating systems using appropriate technology and control mechanisms. CO4: Select and prepare suitable root media, implement appropriate planting techniques, and design and install irrigation and fogging systems for efficient water management. CO5: Develop fertilization schedules and apply fertilizers effectively based on plant needs and soil conditions. CO6: Explain the principles of greenhouse climate measurement and control and utilize appropriate instruments for monitoring and managing environmental parameters. CO7: Identify and manage common insect and disease problems in greenhouse environments using effective and sustainable methods. CO8: Select suitable crops for protected cultivation, manage their irrigation, fertilization, and cultivation practices, and implement appropriate harvesting and post-harvest techniques

	CO9: Conduct economic analysis of greenhouse projects, considering initial
	investment, operational costs, and potential benefits.
Monning hot	voon COs with BOs and BSOs

Mapping between COs with POs and PSOs Mapping between Cos, POs and PSOs

СО		РО													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																	
CO2																	
CO3																	
CO4																	
CO5																	
CO6																	
CO7																	
CO8																	
CO9																	

Course Code	e	IDE-4.8.8											
Course Title	;	Water Quality and Management Measures											
Course Cred	lit	3(2+1)											
Objectives	1. Ur	nderstand the natural factors affecting water quality and the various											
of Course	Wa	ater quality standards.											
	2. Ide	entify and differentiate between point and non-point sources of water											
	ро	llution.											
	3. Re	ecognize the impacts of various contaminants on water quality and											
	hu	man health.											
	4. Ar	halyse the suitability of water for irrigation based on established criteria.											
	5. Ex	plore water decontamination technologies and management practices											
	for	for poor-quality water utilization.											
Course	Theory:												
Content													
	Natural fa	ictors affecting quality of surface water and groundwater, water quality											
	objectives	in relation to domestic, industrial and agricultural activities, drinking											
	water qua	water quality standards, irrigation water quality classification as per USSL and All											
	Indian Co	ndian Coordinated Research Project (AICRP) criteria, point and nonpoint water											
	pollution	pollution sources, water contamination due to inorganic and organic compounds,											
	water con	tamination related to agricultural chemicals, food industry, hydrocarbon											
	and synth	netic organic compounds. Arsenic and fluoride contamination in											
	groundwa	ter and remedial measures, water decontamination technologies, cultural											
	and mana	gement practices for using poor quanty water for infigation.											
	Dractical	Water quality analysis and classification according to USSL and											
		riteria: soil chemical analysis and estimation of lime and gypsum											
	requireme	interia, son chemical analysis and estimation of time and gypsum onts: study of salinity development under shallow and deen water table											
	conditions	s: study of contamination movement and transport in soil profile: study											
	of differe	nt water decontamination techniques: study of different cultural and											
	managem	ent practices for using poor quality water for irrigation: field visit to											
	industrial	effluent disposal sites											
References	• F	• FAO 1996 Control of water pollution from agriculture - FAO irrigation											
	and drainage paper 55												
	• (Grav N.F. Water Technology Rai Kamal Electric Press Kundli											
	н	Jarvana											
L	11	iai yana.											

		 Hussain, S.K. 1986. Text Book of Water Supply and Sanitary Engineering. Oxford & IBH Publishing Co. New Delhi. Manahan, S.E. 2009. Fundamentals of Environmental Chemistry. CRC Press, New York. 													
		٠	McC	Gauhe	ey, P	.H. 1	1968.	Eng	ineeri	ng M	anagen	nent of	wat	er qu	uality.
			Mc(Graw	Hill I	Book	Comj	pany,	New	York.	1. 0			•.1	1.
		and alkali waters. Bull. No. 1/98. CSSRI, Karnal, p. :36.													
		• Punmia, B.C. and Lal, P.B.B. 1981. Irrigation and water power													
		engineering. Standard Publishers Distributors, Delhi.													
					-										
Course	A	t the e	end of	f the o	course	e, lea	rners	will b	e able	e					
Outcomes	C	01 :	expla	in the	e natu	ral fa	actors	affec	ting s	surface	e and g	roundw	ater	qualit	y and
	th	Ω ? Analyse water quality data and classify water for various uses based on													
	C	established standards (USSI AICRP)													
	es C	established standards (USSL, AICKP). $CO3$: Identify point and pon-point sources of water pollution related to different													
		03. I	es and	ly po I thei	nn an r envi	ronm	n-pon ental	imna	rts	JI wat	er ponu		aleu	to un	lerent
	C	04 : F	valua	ate the	e effe	cts of	vario		ntami	nants (inorgan	nic, orga	nic.	agricu	ıltural
	ch	emic	als, ir	ndusti	rial ef	fluen	ts) on	wate	r qua	lity and	d huma	n health	1.		
	С	05:	Reco	mmei	nd ar	nd ar	nalyse	the	effec	tivene	ss of	water of	lecor	ntamin	nation
	te	chnol	ogies	and 1	nanag	geme	nt pra	ctices	for u	sing po	oor-qua	ality wat	ter fo	r irrig	ation.
Mapping be	etwee	en CO	s wit	h PO	s and	PSO	S								
Mapping b	etwe	en C	os, PO	Os an	d PS	Os									
CO							PO							PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Code	e	IDE-4.8.9										
Course Title		Landscape Irrigation Design and Management										
Course Cred	lit	3(2+1)										
Objectives	1. Un	derstand the principles and methods of landscape irrigation design and										
of Course	ma	nagement.										
	2. Co	mpare and contrast conventional and modern irrigation systems for										
	lan	dscapes.										
	3. De	sign and install efficient landscape irrigation systems using appropriate										
	components.											
	4. Op	4. Operate and maintain landscape irrigation systems effectively.										
	5. Utilize automation technology for optimal irrigation control and water											
	cor	nservation.										
Course	Theory: (Conventional method of landscape irrigation- hose irrigation system,										
Content	quick relea	ase coupling system and portable sprinkler with hose pipes; Modern										
	methods of	f landscape irrigation- pop-up sprinklers, spray pop-up sprinkler, shrub										
	adopter, di	rip irrigation and bubblers; Merits and demerits of conventional and										
	modern ir	rigation systems, types of landscapes and suitability of different										
	irrigation methods, water requirement for different landscapes, Segmen											
	landscape	irrigation systems, Main components of modern landscape irrigation										
	systems and their selection criteria; Types of pipes, pressure ratings, sizing and											

	selection criteria; Automation system for landscape irrigation- main components, types of controllers and their application, Design of modern landscape irrigation systems, operation and maintenance of landscape irrigation systems.													
	Practic of irri Determ landsca in irriga sizing, evaluat	cal: S gation ination pes, S ation Pression.	tudy n sy on of Study desig sure	of irr stem pow of in n: blo calcu	igatio for er rea rigatio ocks & lation	n equ land quire on co z sym s etc	uipme scape ment, ntroll nbols, z., Vis	ents fo e, de pum ers an head sit to	or land termina p select d other layout landso	scapes; ation o ction. I r equipi , zoning cape ir	Design of wate frrigatio ments, U g and va rigation	and f er re n sch Jse of lves l syste	installatior quirement eduling of AutoCAD ayout, pipe em and its	n t. of O e ts
References	•	 Michael A.M. 2012. Irrigation: Theory and Practice. Vikas Publishing Vikas Publ. House New Delhi. Singh Neeraj Partap. 2010. Landscape Irrigation and Floriculture Terminology, Bangalore. Smith Stepehen W. Landscape Irrigation and Management. John Wiley and Sons. 												
Course Outcomes Mapping be	At the of CO1: 1 landsca CO2: A irrigatio CO3: 1 sizing of CO4: 1 various CO5: 0 optimal tween C	end o Expla pe in Analy on mo Desig of pip mple cont Condu <u>l perf</u> os, P	f the in the rigati- ze wa ethod gn an- bes, pu- ment roller act irr orma Os an	cours ne advorse on sy ater re s base d ins umps and rs and rigation nce a nd PS	e, lea vantas stems equire ed on tall la , and mana technon sch nd wa	rners ges a emen terra andsc other ge au nolog adultater c	will ts for in and ape i comp toma tioma ties. ing ar onser	be abl isadva diffe d plan rrigat ponen tion s nd ma <u>vation</u>	le antages rent lan at needs ion sy its. systems intain l n.	s of co ndscape s. stems, s for la landsca	onventio es and s includin ndscape	nal a elect ng se irrig ation	nd moder appropriat lection an ation usin systems fo	rn te nd ng or
CO						PO							PSO	
	1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
CO1														
CO2														
CO3														
CO4														
CO5														

Course Code	e	REE -4.8.10							
Course Title)	Plastic Applications in Agriculture							
Course Cred	lit	3 (2+1)							
Objectives	1.To und	lerstand the concept and importance of protected cultivation in modern							
of Course	agricul	tural practices.							
	2.To stud	ly different types of protected structures such as greenhouses, polyhouses,							
	and sha	ade net houses.							
	3.To dese	ribe the different types of materials used and design criteria for different							
	types o	f protected cultivation structures.							
	4.To des	ign, construction, and management of protected structures for optimal							
	plant g	rowth and yield.							
Course	Course	Content: Introduction of protected cultivation and plasticulture - types							
Content	and quality	ity of plastics used in soil and water conservation, production agriculture							
	and post	harvest management. Quality control measures. Present status and future							
	prospecti	ve of plasticulture in India. Water management - use of plastics in in-situ							

	moisture conservation and rain water harvesting. Plastic film lining in canal, pond
	and reservoir. Plastic pipes for irrigation water management, bore-well casing and
	subsurface drainage. Drip and sprinkler irrigation systems. Use of polymers in
	control of percolation losses in fields. Soil conditioning - soil solarisation, effects
	of different colour plastic mulching in surface covered cultivation. Nursery
	management - Use of plastics in nursery raising, nursery bags, trays etc. Controlled
	environmental cultivation - plastics as cladding material, green / poly / shade net
	houses, wind breaks, poly tunnels and crop covers. Plastic nets for crop protection
	- anti insect nets, bird protection nets. Plastic fencing. Plastics in drying,
	preservation, handling and storage of agricultural produce, innovative plastic
	packaging solutions for processed food products. Plastic cap covers for storage of
	food grains in open. Use of plastics as alternate material for manufacturing farm
	equipment and machinery. Plastics for aquacultural engineering and animal
	husbandry - animal shelters, vermi-beds and inland fisheries. Silage film technique
	for fodder preservation. Agencies involved in the promotion of plasticulture in
	agriculture at national and state level. Human resource development in
	plasticutlure applications.
	Practical: Design, estimation and laying of plastic films in lining of canal
	reservoir and water harvesting ponds. Study of plastic components of drip and
	sprinkler irrigation systems, laving and flushing of laterals. Study of components
	of subsurface drainage system. Study of different colour plastic mulch laying.
	Design, estimation and installation of green, poly and shade net houses, low
	tunnels etc. Study on cap covers for food grain storage, innovative packaging
	solutions - leno bags, crates, bins, boxes, vacuum packing, unit packaging, CAS
	and MAP and estimation. Study on use of plastics in nursery, plant protection,
	inland fisheries, animal shelters, preparation of vermi-bed and silage film for
	fodder preservation. Study of plastic parts in making farm machinery. Visits to
	nearby manufacturing units/dealers of PVC pipes, drip and sprinkler irrigation
	systems, greenhouse/ polyhouse/shadehouse/ nethouse etc. Visits to farmers' fields
	with these installations.
References	1. Brahma Singh, Balraj Singh, Naved Sabir and Murtaza Hasan. 2014. Advances
	in Protected Cultivation. New India Publishing Agency, New Delhi.
	2. Brown, R.P. 2004. Polymers in Agriculture and Horticulture. RAPRA Review
	Reports : Vol. 15, No. 2, RAPRA Technology Limited, U.K.
	3. Central Pollution Control Board. 2012. Material on Plastic Waste
	Management. Parivesh Bhawan, East Arjun Nagar, Denn-110052.
	Guide to Properties and Performance, McGraw Hill New Delbi
	5 Dubois 1978 Plastics in Agriculture Applied Science Publishers Limited
	S. Dubbis. 1976. Plastics in Agriculture. Applied Science Publishers Enniced, Essex England
	6 Manas Chanda Salil K Roy 2008 Plastics Fundamentals Properties and
	Testing CRC Press
	7. Oiha.T.P. and Michael, A.M., 2012. Principles of Agricultural Engineering - I.
	Jain Brothers, Karol Bagh, New Delhi.
	8. Pandey, P.H. 2014. Principles and Practices of Agricultural Structures and
	Environmental Control. Kalyani Publishers, Ludhiana, India.
	9. Shankar, A.N. 2014. Integrated Horticulture Development in Eastern
	Himalayas, Plasticulture in AgriHorticulture Systems, 241-247.
	10. Srivastava, R.K., R.C. Maheswari, T.P. Ojha, and A. Alam. 1988. Plastics
	in Agriculture. Jain Brothers, Karol Bagh, New Delhi.
Course	At the end of the course, learners will be able
Outcomes	CO1: To understand the concept and significance of protected cultivation and its
	role in sustainable agriculture.
	CO2: To get knowledge about green house technology, types of green houses and
	construction of green houses.

CO3: To design and manage protected structures, including construction, environmental control, irrigation, and fertigation. CO4: To get knowledge of Green house equipments, materials of construction for traditional and low cost green houses. CO5: To learn about Irrigation systems used in greenhouses, shade net house in protected cultivation. Mapping between Cos, POs and PSOs PO PSO СО 2 3 4 5 7 8 9 1 6 10 11 12 1 2 3 CO1 **CO2** CO3 **CO4**

Course Co	de	FMPE – 4.8.11													
Course Tit	le	Μ	lecha	nics	of Til	lage	and T	ractio	on						
Course Cro	edit	3((2+1)												
Objectives	1)	To g	et kn	owled	lge al	oout r	nechar	nics o	f tilla	ige tool	s.				
of Course	2)	To a	cqua	intanc	e wit	h eng	ineerir	ng pro	operti	es of se	oil.				
	3)	To le	arn a	bout a	applic	ation	of din	nensio	onal a	analysis	s in soil	l dynam	nics a	nd tra	action
		predi	ction	equa	tion.										
	4)	To fa	amili	arise	with t	ractio	on mod	lel an	d app	olication	n of GI	S in soi	il dyn	amic	s.
Course	T	heory	v: Int	roduc	tion t	o mec	chanics	ofti	llage	tools, e	nginee	ring pro	operti	es of	soil,
Content	pr	incip	les ar	nd cor	cepts	, stre	ss strai	n rela	tions	hip, des	sign of	tillage t	ools	princi	iples
	of	soil	cutt	ing,	desig	n equ	ation,	forc	e ana	alysis,	applic	ation o	of dir	nensi	onal
	ar	nalysi	s in s	oil dy	nami	cs and	l tractio	on pre	edicti	on equa	ation. I	ntroduc	tion t	o trac	ction
	ar	nd m	echa	nics,	off	road	tractio	on a	nd n	nobility	, trac	tion m	odel,	trac	ction
	1n	nprov	emer	it, tyr	e siz	e, tyr	e lug	geom	letry	and the	eir effe	ects, ty	re tes	sting,	SO1l
		ompac		and p	lant g	rowu	i, varia	D111ty	/ and	applica	tion of	GIS IN	SOIL C	iynar	nics.
	P I			leasu	alata		static		iynan d flor	atotion	droft	for page		rotor	nage,
	SU	n pa	ing t		elatec	nd cir		ig alle	dry	atation,	t soil a	onditio		d loo	d and
		el consumption for different farm operations; Weight transfer and tractor loading													
	in	consumption for different farm operations; weight transfer and tractor loading including placement and traction aids. Studies on types, tracks and treads under													
	di	fferer	ne pr	nditio	ns an	id soi	l comn	actio	n and	l numbe	er of or	eration	is is	Juds	unuer
References	•	Vand	lenbe	rg an	d Gill	. Till	age an	d Tra	ction			<i>ciulion</i>			
	•	Lilie	dahl	JB an	d oth	ers. T	ractor	and F	ower	Units.					
	•	Dani	el Hi	ll. Fu	ndam	entals	s of So	il Phy	vsics.						
	•	Terza	aghi]	K & F	Peck I	Ralph	B. Soi	l Me	chani	cs in E	nginee	ring Pra	actice	s.	
Course	A	t the e	end o	f the	cours	e, lea	rners v	vill be	e able	;	U	U			
Outcomes	С	01 : l	Jndei	stand	the r	necha	inics of	f tilla	ge to	ols.					
	С	O2 : I	Desig	n the	tillag	e tool	s by us	sing c	once	pt of so	oil mec	hanics.			
	С	03 : A	Able	to use	engi	neerir	ng prop	oertie	s of s	oil in	design	of tilla	ge to	ols.	
	С	04 : l	Jtiliz	e the	traction	on mo	odels a	nd G	IS ap	plicatio	ons in s	oil dyna	amics		
Mapping b	etwe	ween Cos, POs and PSOs													
CO	PO			-	I	1	1			T	1		PS ()	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1										ļ					
CO2															
CO3															
CO4															

Course Cod	e	E FMPE-4.8.12													
Course Title	e		Fa	rm Ma	achir	nery	Desigr	n and	Pro	ductio	n				
Course Cree	dit		3(2	2+1)											
Objectives	1) T	lo ur	ndersta	and des	sign p	aran	neters a	nd de	sign	proced	lure of	agricul	tural	mach	nines.
of Course	2) T	Го д	et kno	wledge	e abo	ut st	andard	proc	edure	es of de	esign o	f vario	us co	ompo	nents
	o	f far	m Ma	chiner	у.										
	3) 7	То	acquai	ntance	wit	h CN	NC too	ols an	nd m	anufac	turing	techni	ques	incl	uding
	p	owd	ler met	tallurg	y, EĽ	DM e	tc.								_
	4) T	lo fa	amiliar	ise pro	oduct	ion to	echnol	ogies	and e	econor	nics of	produc	ction.		
Course	The	eory	: Intro	oductio	on to	desi	gn par	amete	ers of	f agric	ultural	machi	nes a	& de	sign
Content	proc	cedu	ire. Ch	aracte	ristic	s of f	arm m	achin	ery d	lesign.	Resear	rch and	dev	elopr	nent
	aspe	ects	of far	m mac	hine	ry. D	esign (of sta	ndarc	d powe	er trans	missio	n cor	npon	ents
	used	d in	agric	ultural	mac	chine	s: mec	hanic	al &	z hydra	aulic u	nits. Ir	trod	uctio	n to
	safe	ety i	n pow	er tran	smis	sion.	Applic	cation	of d	lesign	princip	les to t	he sy	stem	is of
	sele	cted	l farn	n mac	hine	s. C	ritical	appr	aisal	in p	roducti	on of	Ag	ricult	ural
	Mac	chin	ery; A	dvanc	es in	mate	erial us	ed fo	r agr	icultur	al mac	hinery.	Cutt	ing t	ools
	incl	udir	ng CN	C tool	s and		ishing	tools	Adv	vanced	manu	facturi	ng te	chnie	ques
	1ncl	udir	ng po	wder	meta	llurg	y, ED	M (1	Electi	ro D_{18}	scharge		ninin	g), I	Heat
	Fito		Tolo	steers		ang	pack c	ardur	121ng Indu	s, snot	pining	proces	s, eu	LII .:	mus,
	FILS	o a duat	ion	monog	, Jig	sα + τ	FIXU Doliohi	lies.	Fee	suiai	lay-ou	r pram	iiiig,	Qu	ion
	Fam	nilia	rizatio	n with	Proi	ect R	enort	nty.	LU	nonne	5 01	proce	55 2	SCIECI	.1011.
	Pra	ctic	al· Fa	miliari	zatio	n wi	th diff	erent	desi	on asn	ects of	farm	mach	niner	v and
	sele	ected	d com	onent	s. So	lving	desig	n pro	blem	s on f	arm m	achines		eanir	ment
	Visi	isit to Agricultural machinery manufacturing industry. Tractor manufacturing													
	indu	ustry	v Jigs	and F	ixtur	es –	study	in re	elatio	on to a	gricult	ural m	achi	nerv.	Fits.
	tole	ranc	ces and	d limit	ts: La	avout	t plann	ing c	ofas	small s	scale in	ndustrv	: Pro	oblen	is on
	Eco	non	nics of	proce	ess se	electi	on: Pre	eparat	tion of	of a pr	oject r	eport;	Case	stud	y for
	mar	nufa	cturing	g of sir	nple	agric	ultural	macl	hiner	y.	5	1 /			5
References	• R	liche	ey, C.E	3. Agri	cultu	ral E	Inginee	ring l	Hand	book.					
	• A	dina	ath M	and A	B Gu	pta. l	Manufa	acturi	ng To	echnol	ogy.				
	• S	harr	na PC	and	DK	Agga	ırwal.	Mach	ine 1	Design	. Naru	ıla V.	Man	ufact	uring
	p	roce	ess.												
	• S	ingł	n S. M	echani	cal E	ngin	eer's H	landb	ook.						
	• C	<u>hak</u>	rabarti	<u>NR. I</u>	Data	book	for Ma	achine	e Des	sign.					
Course	Att	he e	end of	the cou	urse,	learn	ers wil	ll be a	ıble						
Outcomes		1: A	ble to	desig	n agr	iculti	iral ma	chine	es acc	cording	to mo	dern de	sign	proc	edure
	and	tech	inique	S.						с с	N / 1				1 1
	CO	2:	Able to	o desig	gn v	ariou	s com	ponei	nts o	I Iarm	Mach	inery	using	g stai	ndard
	proc	сеаи 2. р	res of	design	l. lion n	with (NC +		nd n	aonufa	oturino	taahni	auaa	inch	Idina
		J. D Ider	metall	z iaiiiii urov ¹		viui (Letc		JUIS 8	uiu II	lanula	cumig	techill	ques	men	uunig
		powder metallurgy, EDM etc.													
	proc	duct	ion in	produa	ction	of fa	rm Ma	chine	erv	teenn	ologica	, and		1011IN	.5 01
Mapping he	twee	n Co	os. PO	s and	PSO	<u>s</u>			<u> </u>						
CO	PO		00,20		200	2							PSO)	
	1 2	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course Titl	e Human Engineering and Safety													
Course Cre	dit	3 (2 +	1)											
Objectives	1) To	get kn	owled	lge ab	out h	uman	facto	ors in	human	perfor	mance.			
of Course	2) To	unders	stand t	he co	ncept	t of bi	omec	hanic	es of hu	ıman b	ody par	t mot	ion.	
	3) To	acquai	ntanc	e witł	n Anti	hropo	metry	/.						
	4) To	o get fa	milia	rise re	egard	ing da	anger	ous 1	nachin	e (Reg	ulation) act	and u	ise of
	saf	ety gad	gets.		0	U	U							
Course	Theor	ry												
Content	Hum	an facto	ors in s	ystem	deve	lopme	ent – c	conce	pt of sy	stems; l	basic pro	ocesse	es in s	ystem
	devel	opment,	perfo	rmanc	e reli	ability	, hun	nan p	erforma	ance. In	formati	on inp	out pr	ocess,
	visua	display	/s, ma	jor typ	bes ar	id use	of di	splays	s, audit	ory and	factual	displa	ays. S	peech
	comm	unicatio	ons. B	iomec	hanic	s of m	lotion	, type	s of mo	ovemen	ts, Rang	ge of i	movei	ments,
	activit	gin and	endura	tools a	speed	b batel	lovico	cy, III s Ant	hronor	oftry: or	rangem	lls. пі	iman d utili	notor
	of we	ork snac	re atn	nosnh	eric c	onditi	ons k	s. An ieat e	exchang	e proce	ess and	nerfo	rmana	zation re air
	pollut	ollution. Dangerous machine (Regulation) act, Rehabilitation and compensation to												
	accide	ccident victims, Safety gadgets for spraying, threshing, Chaff cutting and tractor & trailer												
	opera	peration etc.												
	Pract	ractical												
	Calib	ration c	of the	subje	ect in	the 1	labora	tory	using 1	bi-cycle	ergo-n	neter.	Stud	y and
	calibr	alibration of the subject in the laboratory using mechanical treadmill; Use of respiration												
	gas m	eter froi	m hum	an ene	ergy p	0.01 01 01 01 01 01 01 01 01 01 01 01 01 01	t view	V. Use	of Hea	rt Rate	Monitor	. Stud	y of g	eneral
	fatigu	e of the	e subje	omotr	ng BI	ink ra	tio me	ethod.	, Famili	arizatio	n with	electro	o-myc	ograph
	lavou	t and lo	cations	onieu.	ntrol	asuren	iffere	or a i nt trad	selected	amiliari	zation v	niuni vith th	work e noi	space
	vibrat	ion equi	inment	t Fam	iliariz	vation	with s	afety	gadgets	s for var	ious far	m mag	chines	
References	Refe	rence B	Books	I uiii	1114112	auton		uiety	Suagon	, 101 (u	1045 141	III IIIu		
	• Ch	apanis	A. 199	96. H	uman	Facto	ors in	Svst	em Eng	gineerin	ıg. Johr	ı Wil	ev &	Sons.
	Ne	w York						5	· · ·		0		5	,
	• Du	l J. ai	nd W	'eerdr	neest	er B.	1993	. Erg	gonomi	cs for	Begin	ners.	A	Quick
	Re	ference	Guid	e. Tay	lor a	nd Fra	ancis,	Lon	don.		C			
	• Ma	thews	J. and	l Kni	ght A	A. A.	1971	. Erg	gonomi	cs in A	Agricult	ural	Equip	oment
	De	sign. N	ationa	ıl Inst	itute	of Ag	ricult	ural l	Engine	ering.				
	• As	trand P	. And	and	Roda	hl K.	1977	. Tex	tbook	of Wo	rk Phys	iolog	y. M	c Hill
	Co	rporatio	on, Ne	ew Yo	ork.									
	• Ma	urk S.	Sande	ers an	d Er	nest .	James	s Mc	Cormi	ck. 19	93. Hu	man	Facto	ors in
	En	gineerii	ng and	l Desi	ign. N	Ac Hi	ll Cor	porat	tion, N	ew Yor	·k.			
	• Ke	egan J.	J, Rad	ke A	0. 19	64. D	esign	ing v	ehicle	seats fo	or greate	er cor	nfort.	. SAE
	Jou	irnal; 7	2:50~:	5.			Ŧ							
	• Ya	dav R,	Tew	arı V	.K. I	998.	Tract	tor o	perator	work	place d	lesign	-a re	eview.
Correct		irnal of	I erra	mecl		\$ 35:4	+1-53							
Course	At the	e end of	the c	ourse	, lear	ners v	VIII D	e able) 					
Outcomes		Use nu	iman i		S III C	lesign			achine	ry.		antal	faata	na and
	co2	ADIE IC	ric pri	incinl	as sp	ace by	/ usin	g ma	II-IIIaCI	ime-en	vironin	ental	Tacto	is and
		Know	the	dang	erous	mach	nine (Rem	lation)	act an	d use o	f safe	ntv og	daets
	durin	g worki	ng wi	th far	m ms	achine	ries (regu		act all	a use 0	1 5410	ny ga	uzero
Manning he	etween	$\frac{1}{Cos.} P$	Os an	d PS	<u></u> Os									
CO	PO	2 3 6 y I 1		~ - 0								PSC)	
	1 2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1														
CO2														
CO3														
Mapping be CO CO1 CO2 CO3	anthr CO3: during etween PO 1 2	anthropometric principles. CO3: Know the dangerous machine (Regulation) act and use of safety gadgets during working with farm machineries. ween Cos, POs and PSOs O PSO 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 3 4 5 6 7 8 9 10 11 12 1 2 3 3 4 5 6 7 8 9 10 11 12 1 2 3 3 5 6 7 8 9 10 11 12 1 2 3 3 6 7 8 9 10 11 12 1 2 3 3 7 7 8 9 10 11 12 1 2 3 3 7 7 8 9 10 11 12 1 2 3 3 7 7 8 9 10 11 12 1 2 3 3 7 7 8 9 10 11 12 1 2 3 3 7 7 8 9 10 11 12 1 2 3 3 7 7 8 9 10 11 12 1 2 3 3 7 7 8 9 10 11 12 1 2 3 4 7 7 8 9 10 11 12 1 2 3 4 7 7 8 9 10 11 12 1 2 3 4 7 7 8 9 10 11 12 1 2 3 4 7 7 8 9 10 11 12 1 2 3 4 7 7 8 9 10 11 12 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 2 1 2 3 4 7 7 8 9 10 11 12 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1												

Course Code	FMPE-4.8.14
Course Title	Tractor Design and Testing

Course Cr	edit		3	(2 +	1)										
Objectives	1)	Το ι	ınder	stand	desi	gn Pr	roced	ure fo	or des	sign an	d deve	lopmen	t of a	agricu	ıltural
of Course		tracto	or.												
	2)	To g	et kn	owled	lge al	bout t	racto	r stab	ility &	& weig	ht distr	ibution.			
	3)	To g	et kn	owled	lge al	bout c	lesign	n of v	arious	s systei	ms of ti	actor.			
	4)	To fa	amilia	arise	tracto	r testi	ing.								
Course	T	heory	7												
Content	Pr	ocedu	ire fo	or des	ign a	nd de	velop	ment	of ag	ricultu	ral trac	tor, Stu	dy of	paran	neters
	fo	r bala	inced	desi	gn of	tracto	or for	stabi	lity &	k weig	ht distr	ibution,	tract	ion th	neory,
	hy	/draul		t and	hitch	syste	em de	esign.	Desi	gn of r	nechan	ical pov	ver tr	ansm	ission
	1n	agric		al tra	ctors:	sing	e dis	c, mu		sc and	cone cl	utches.	Kolli	ing fr	1Ction
	an	ia ani	11-1110	du of	beari	ngs. 1 ial da	Jesig	n oi Sootur	Acke	trootor	Steerin	g and th		r nya Iootio	raunc
	SU	linda	z. Siu r nic	uy or	spec.	n nin	sigii i	kchat	es or	D_{Desi}	on of	s allu ul	t con	trols	of an
		ricult	i, pis ural i	tracto	r Tre	n pin	, crai Festii	18511a. 20	ii, eit	. Desi	gii oi	seat and		11015	or an
	P	ractic	arar (al	i acto	1. 116		i USUI	15.							
	D	esign	prob	lem c	of trac	ctor c	lutch	– (Si	ngle/	Multir	ole disc	clutch)	. Des	ign o	f gear
	b	ox (sv)	nchro	omesl	n/con	stant	mesh). var	iable	speed	constar	t mesh	drive	: Sele	ection
	of	tract	or tir	es –	Prob	lem s	olvin	g. Pro	oblem	1 on de	esign o	f gover	nor. I	Desig	n and
	se	lectio	on of	hyd	lrauli	c pui	np.	Engir	e tes	sting a	as per	BIS c	ode.	Dra	awbar
	pe	erformance in the lab; PTO test and measure the tractor power in the lab/field;													
	D	Determining the turning space, turning radius and brake test, hydraulic pump													
	pe	berformance test and air cleaner and noise measurement test; Visit to tractor testing													
	ce	centre/industry.													
References	R	efere	nce B	ooks											
	•	Lilje	dahl J	В&	Othe	ers. Ti	actor	's and	Their	r Powe	er Units	•			
	•	Rayn	nond	N, E	A Yo	ng an	d S N	licola	s. Vel	hicle T	raction	Mecha	nics.		
	•	Male	ev V	L. Int	ernal	Com	busti	on En	gines						
	•	Kirpa	al Sin	gh. A	utor	obile	Engi	neeri	ng – `	Volla	nd Vol	11.			
	•	Riche	ey C.	B. Ag	gricul	tural	Engir	neerin	g Hai		с. т			1	c
	•	Ment	a MI	L, Sr	k vei	rma,	SK I	vlishr	a, vr	s Shar	ma. Te	esting d	x Eva	aluati	on of
Course	A .	Agri(uitur	al Ma		ery.	more		No chi	0					
Outcomes		1 une 0	nu o Ise st	i ule (cours	e, lea	roce	WIII (Jura f	for do	t sign at	nd dave	alonmer	nt of a	arrian	iltural
Outcomes	tra	or. C	50 51	anuai	u ue:	sign þ	noce	Juie I	or ue	sign a	liu ueve	elopiner		agricu	iituiai
	C	$02 \cdot 1$	Itilize	the c	ronce	nt of	stahil	itv &	weig	ht dist	ributior	n in trac	tor de	sion	
	C	CO3: Design various systems of tractor													
	C	04: F	Becon	ne far	niliar	with	proc	edure	of tra	actor te	sting.				
Mapping b	between Cos. POs and PSOs														
CO	PO		/										PSC)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1												1			
CO2															
CO3															
CO4															

Course Cod	e FMPE-4.8.15													
Course Title	•	Hy	drau	lic D	rives	and	Cont	trols						
Course Cree	lit	3 (2 + 1)										
Objectives	1) To u	nders	tand l	Hydra	aulic	Basic	s law	νs.						
of Course	2) To g	et kno	owled	lge at	out c	liffere	ent hy	/drau	lic con	nponen	ts.			
	3) To g	et kno	owled	ge ab	out d	esign	, type	es and	l use of	f pump	s and va	alves	in hy	draulic
	syste	m.												
	4) To fa	milia	rise v	vith u	se of	pneu	matic	es sys	tems, I	Robotic	s syste	ms in	agric	cultural
	appli	catior	۱.											
Course	Theory	,												
Content	Hydrau	lic B	asics:	Pas	cal's	Law,	Flov	w, Er	nergy,	Work,	and P	ower.	Нус	lraulic
	System	s, Co	lor C	oding	g, Res	servoi	irs, S	traine	ers and	Filters	, Filter	ing M	Iateri	al and
	Elemen	ts. Ac	ccum	ılator	s, Pre	essure	e Gau	ges a	nd Vol	ume M	eters, H	Iydraı	alic C	'ircuit,
	Fittings	and	Conn	ector	s. Pu	mps,	Pum	p Cla	assifica	tions,	operatio	on, pe	erform	nance,
	Displac	Displacement, Design of Gear Pumps, Vane Pumps, Piston Pumps. Hydraulic												
	Actuato	ctuators, Cylinders, Construction and Applications, Maintenance, Hydraulic												
	Motors	Iotors. Valves, Pressure-Control												
	Valves,	alves, Directional- Control Valves, Flow-Control Valves, Valve. Installation,												
	Valve	Valve Failures and Remedies, Valve Assembly, Troubleshooting of Valves												
	Hydrau	lydraulic Circuit Diagrams and Troubleshooting, United States of American												
	Standar	tandards Institute USASI Graphical Symbols Tractor hydraulics, nudging												
	system,	stem, ADDC. Pneumatics: Air services, logic units, Fail safe and safety systems												
	Robotic	bobotics: Application of Hydraulics and Pneumatics drives in agricultural												
	systems	/stems, Programmable Logic Controls (PLCs).												
	Practic Interadu	Practical												
	Study	ction	to ny Irouli	araui	ic sys	budro	. Sluc	19 01 Volvo		une pur	nps, ny	araul	\mathbf{r}_{α}	uators.
	study C	h Hyc	mauno aulia		uito I	hydro		in t	s, colo	ui cou	duction		18. D	motion
	simple	figuration of	aune		nus, 1	ition i	n ogr	i III ioultu	racions	a of hy	droulio	i io and	nnou	matics,
	for robe	uics c	levice	s, pn	euma	uics i	n agi	icuitt	ile, Us	e or ny	uraune	s and	pneu	matics
Deferences	Deferen	$\mathbf{P}_{\mathbf{P}}$	oolza											
Kelerences	Kelerer	or D		v Dor	aar 8	- EI	Dorg	or Dr	incinlo	s of Fo	rm Ma	hina	AX 7	
	• Anth	onv F	i, Ku Flui	y Dai id Por	yer a	c EL	nnlie	otions		s 01 Fa		JIIIICI	у.	
	 Main 	mdar	Oil 1	Hydr	wei a aulie	Svete	m	ations	5.					
	Maju	Hva Hva	lrauli	c Cor	ntrol 9	Syste	ms							
	• John	Deer	e. Fur	ndam	entals	s of S	ervic	e Hvo	draulic	S.				
Course	At the e	end of	f the c	course	e lea	mers	will l	be ab	le	5.				
Outcomes	CO1 : U	se Hy	vdrau	lic la	ws in	hvdr	aulic	syste	em desi	on.				
o uteomes	CO2: A	ble to	o reco	ognise	e diff	erent	hvdr	aulic	compo	nents.				
	CO3: U	Jtilise	vario	ous ty	pes c	of pur	nps a	nd va	lves in	hvdra	ulic svs	tem.		
	CO4 :	Beco	me fa	milia	ur fw	vith u	se of	pneu	umatics	s syster	ns, Rol	botics	s syst	ems in
	agricultural application.													
Mapping be	tween Co	os, PO	Ds an	d PS	Os									
CO	PO											PSC)	
	1 2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1														
CO2														
CO3														
CO4														

Course Code	FMPE-4.8.16
Course Title	Precision Agriculture and System Management
Course Credit	3(2+1)

Objectives	1) To	unders	stand o	conce	ot of l	Precis	ion A	gricu	ılture.					
of Course	2) Tc	get kn	owled	ge ab	outed	minm	ent u	sed fo	or preci	sion as	ricultu	re		
01 000100	3) T	o get	know	ledge	aboi	it GI	S a	nd s	ensors	based	precis	ion a	agrici	ılture
	ma	chinery	/ .								F			
	4) To	famili	arise	with ı	ise of	Data	base	and S	System	approa	ach in f	farm	mach	inerv
	ma	nageme	ent.						-)	TT -				5
Course	Theo	rv: P	recisi	on A	Agricu	ılture	_	need	and	func	tional	requ	ireme	ents.
Content	Fami	liarizati	ion w	ith is	sues 1	relatii	ng to	natu	ral reso	ources.	Famili	ariza	tion	with
	equip	ment f	or pre	ecisio	n agr	icultu	re in	cludiı	ng sow	ing an	d plant	ing r	nachi	ines,
	powe	r spray	vers, l	and	cleari	ng m	achin	es, la	aser gu	uided 1	and le	veller	s, sti	raw-
	chop	opper, straw-balers, grain combines, etc. Introduction to GIS based precision												
	agric	ulture a	nd its	appli	cation	s. Int	roduc	tion t	o senso	ors and	applica	tion c	of sen	sors
	for da	ita gene	eration	n. Dat	abase	mana	ageme	ent. S	ystem	concep	t. Syste	m ap	proac	ch in
	farm	machin	ery m	anage	ment	, prob	lems	on ma	achiner	y selec	tion, m	ainter	nance	and
	scheo	uling o	or oper	ration	s. Ap	piicat	ion to) PEH	x I and	CPM :	for mac	chinei	ry sys	stem
	mana Pr og	gemen	l. Fomili	orizo	tion	with	nraa	ision	ogriou	ltura	problan	00 01	nd i	
	Fami	liorizati	famm ion y	ith y	uon varior	wiui	achin	es fo	agricu		conserv	us ai		lving
	nrohl	miliarization with various machines for resource conservation. Solving												
	Prob	oblems related to cost analysis and inflation and problems related to selection of												
	equir	quipment, replacement, breakeven analysis, time value of money etc.												
References	• Ku	Kuhar J E. The Precision Farming Guide for Agriculturist.												
	• Du	tta SK.	Soil C	Conse	rvatic	on and	l land	man	agemer	nt.				
	• Sig	ma and	l Jagm	nohan	. Eart	h Mo	ving l	Mach	inery.					
	• Wo	ood and	l Stuar	t. Ear	th Mo	oving	Mach	ninery	у.					
	• De	Mess N	1N. Fi	ından	nental	s of C	Geogr	aphic	Inform	nation S	System	•		
	• Hu	nt Don	nell. F	Farm I	Power	and	Mach	inery	Manag	gement	•			
	• Sh	arma D	N and	S Mu	ıkesh	. Farn	n Pow	ver an	nd Mac	hinery	Manage	emen	t Vol	I.
Course	At th	e end o	f the c	ourse	, lear	ners v	vill be	e able	;					
Outcomes	CO1:	Under	stand	conce	pt of	Preci	sion A	Agric	ulture.	1.				
		Under	stand	the in	iporta	ince c	of pred	cision	agricu	lture e	quipme	nts.		
	CUS	Utilis ulturo n	e the	conc	ept (JI GI	s an	a sei	isors 1	n deve	elopme	nt of	prec	2151011
		Fami	liar ta	CIY.	Dat	ahase	and	Sve	tem a	nnroacl	h in f	arm	mach	inerv
	mana	gemen		o use	Dui	abase		. Dy 3	a di contra di	prode			mach	inter y
Mapping b	etween	tween Cos POs and PSOs												
CO	PO	PO PSO												
	1 2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1														
CO2														
CO3														
CO4														

Course Cod	e	PFE-4.8.17								
Course Title	9	Food quality and control								
Course Cree	dit	3 (2+1)								
Objectives	1. To impa	rt knowledge on food quality aspect.								
of Course	2. To unde	To understand the concept of colour, flavour, sampling, viscosity, texture etc.								
	3. To unde	3. To understand various quality control tools used in food industries.								
	4. To beco	me aware the food standards and understand the concept of TQM and								
	TQC									
Course	Theory: Ba	sics of Food Science and Food Analysis, Concept, objectives and need								
Content	of food qual	ity. Measurement of colour, flavour, consistency, viscosity, texture and								
	their relation	nship with food quality and composition. Sampling; purpose, sampling								
	techniques,	sampling procedures for liquid, powdered and granular materials,								

	Qu	ality	cont	trol,	Qual	ity c	ontro	l too	ols, S	Statistic	cal qu	ality c	ontro	l, Se	nsory
	ev	evaluation methods, panel selection methods, Interpretation of sensory results Instrumental method for testing quality. Food adulteration and food safety. TQM and TQC, consumer p References and acceptance, Food Safety Management Systems GAP, GHP, GMP, Hazards and HACCP (Hazard analysis and critical													
	Ins	strum	ental	meth	od fo	r test	ing q	uality	. Foo	d adult	eration	and fo	od sa	fety.	TQM
	an	d TQ	C, c	onsur	ner p	Refe	rence	es an	d acc	ceptanc	e, Foo	d Safe	ty M	lanage	ement
	Sy	stems	GA	P, GI	HP, C	GMP,	Haza	ards a	nd H	ACCP	(Haza	rd anal	ysis a	and c	ritical
	co	ntrol	point), San	itatio	on in f	food i	ndust	ry (S	SOP), I	Food L	aws and	d Reg	gulatio	ons in
	Inc	lia, F	SSAI	, Foo	d gra	des a	nd sta	andar	ds BI	S, AGI	MARK	, PFA,	FPO,	ISO	9000,
	22	000 S	beries	. CAC	C (Co	dex A	Alima	ntario	ous C	ommis	sion), 7	raceab	ility a	and Q	uality
	As	suran	ice sy	stem	in a p	proces	ss pla	nt, Bi	o safe	ety and	Bioter	rorism.			
	Pr	actic	al: E	xamiı	natior	n of c	ereal	s & j	pulses	s from	one of	go-do	wns a	and n	narket
	she	ops ii	n rela	tion 1	to FP	O an	d BIS	S spe	cifica	tions, I	Detection	on of a	dulte	ration	and
	exa	amina	ation	of g	hee	for v	ariou	s sta	ndard	s of A	AGMA	RK &	BIS	stand	lards,
	De	etectio	on of	adul	terati	on a	nd ex	kamin	ation	of sp	ices fo	or AGN	IAR	K and	BIS
	sta	ndarc	ls, De	etectio	on of a	adulte	eratio	n and	lexan	ninatio	n of mi	lk and r	nilk p	oroduc	ts for
	BI	S star	idard	s, Det	ectio	n of a	dulte	ratior	and	examin	nation (of fruit	produ	icts su	ich as
	Jar	ns, je	llys, 1	narm	alade	s for	FPO	speci	ticatio	n, V1s	it to qu	ality co	ntrol	labor	atory,
	Ca	se sti	udy c	of sta	tistica	al pro	cess .	conti	ol in	tood	process	sing inc	lustry	, Stu	dy of
	reg	gistra	ion p	broces	ss an	d lice	ensing	g pro	cedur	e unde	er FSS.	AI, Stu	dy o	r sam	pling
	lec	laboratory and study of records and reports maintained by food processing													
	lat	laboratory and study of records and reports maintained by food processing laboratory.													
Deferences	Tal	aboratory. Ranganna S. Hand book of Analysis and Quality Control for Fruit and													
Kelerences	•	Kan	ganna	1 Drov	land (DOOK	of An	arysis	s and	Quanty	/ Contr	OI IOF F	ruit a	ina	
		veg Smil	etable		Lucis.	Saiar									
	•	Sfile		II D, I	FOOU L: A	Sciel	ice.	of Eq.	d Ca	ion oo o	nd Taa	hnology			
	•	Snai	rma P		III. A		000K (lence a		nnology	y. Saia		
	•	NIUC D. 44		Jun		, Kao	Snan			kajagoj	bai ivi. v	/. F000	Sciel	nce.	
	•	Pott	er Nr	\mathbf{N} and \mathbf{D}	HOLC	nkiss	JH, f	1000 i	Scien	ce.	. .	-1 4-1	.1:4:	. :	1
	•	Dev	Raj,	каке	sn Sn	arma	and .	osni	V.K,	Quanty	for va	alue Ad	a1t101	n in F	000
		Proc The	Essin	lg.	4	d Ctor	. doud	a A at	.1	:'4h 1		- D1		~	
	•	The	Food		ty and	a Stal	ndard	s Act	along	g with I	cules o	z Regul	ation	s.	
Course	Δ.t	tha a	nd of	the e	aw Pi	loor	lers (I	$\frac{1101a}{111}$	PVL.						
Outcomes		ше е)1 . т		une c	the s	tudan	te wit	h var	ious c	; nenacte	of food	l qualit	C7		
Outcomes		Л . 1 ЛЛ Т	o acy	uaint	the s	tuder	is with	ii vai th va	rious a	laws c	ontrolli	ng the	y. adult	oratio	n and
	ev	94. 1 amina	0 acy	luaint the fo	and a	studer	its wi	ui va	nous	laws C	ontrom	ing the	auun	ciatio	n anu
	C)3: [[]		nders	tand	basic	too	ls in	volve	d in f	n boo	uality	in to	tal d	uality
	ma	anage	ment.	naers	tunta	ousic		15 111	10110	u III I	900 a 9	adirey		un q	aunty
	C)4: T	o und	lersta	nd the	e con	cept of	of tota	l qua	lity ma	nagem	ent.			
Mapping b	etwe	en C	os, PO	Os an	d PS	Os	1		1						
			,				PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course Cod	e		I	PFE-4	.8.18										
Course Title	e		I	Food	Plant	Desig	gn and	d Maı	nagen	nent					
Course Cree	dit		(1)	8 (2+1)										
Objectives	1.	The s	stude	nt wil	l be a	ble to	learr	1 aboı	it pre	paratio	n of pro	ject rep	oort a	nd stu	ldy of
of Course		diffe	rent t	ypes	of rec	ords	relati	ng to	produ	iction of	of a foo	d plant.			•
	2.	Study	y of d	liffere	ent ty	pes of	reco	rds re	lating	g to fina	ance in	a food	plant	•	
	3.	Study	y of	differ	ent ty	pes o	of rec	cords	relati	ng to i	marketi	ng of a	i food	d bus	iness,
		Brair	n stor	ming	and S	SWO	Г ana	lysis	o sta	rt a foo	d proce	ssing b	usine	ss.	
Course	Fo	od p	lant	locati	on, s	electi	on c	riteria	ı, Sel	ection	of pro	cesses,	plan	t cap	acity,
Content	Re	equire	ement	ts of p	olant ł	ouildi	ng an	d its c	ompo	onents,	Project	design	, flow	v diag	rams,
	sel	lectio	n of	equip	ment	, prod	cess a	and c	ontrol	ls, Obj	ectives	and pr	incipl	les of	food
	pla	ant la	yout	. Sali	ent fe	eature	s of	proce	essing	g plants	s for ce	ereals, j	pulses	s, oils	seeds,
	ho	rticul	ltural	and	vegeta	able c	rops,	poul	try, fi	sh and	meat p	oroducts	s, mil	k and	milk
	pro	oduct	s. In	trodu	ction	to I	Finan	ce, F	ood	Produc	t Marl	ceting,	Food	l Bus	siness
	Ar	nalysi	is an	d Str	ategio	e Pla	nning	, Inti	oduc	tion to	Mark	eting, I	Food	Mark	teting
	M	anage	emen	t, Sup	ply cl	hain n	nanag	gemer	t for	retail fo	ood pro	ducts, E	Intrep	oreneu	ırship
	de	velop	ment	t in	food	indu	stry,	SWO	DT a	nalysis	, gener	ration,	incut	oation	and
	co	mme	rciali		1 Of 1	deas a	and 1	nnova	tions	, New	produc	t devel	opme	nt pro	ocess,
	G	overn	ment	scne	emes	and 1	incen	tive 1	or pi	comotic	on of e	ntrepre	neurs	nip,	GOVI.
	po po	licio	JII SII	lall a	to for	ed pr		e 100	u pro	cessing	dura of	rise, ex E obtoir	port :	ioona	nport
	po rec	ncies	tion 1	vant inder			ocess	alvei	, and	, proce	ution of	feasibi	lity r	aport	e allu
References	103	Hall	$\frac{1001}{HS}$	and 1	Roser	\mathbf{N}	Mil	k Plai	nt I av	vout E	$\Delta \Omega Put$	lication	$\frac{110}{1}$ Ro	me	
References		Lóne	z An	tonio	Gón	n, 1.5 nez F	ood F	Plant	n Luy Desig	n	101 ut	meation	I, I(0)	me.	
		Robb	erts	The	inis	C F	ood	plant	eng	ineerin	g syst	ems b	v C	RC 1	Press
	•	Wasł	ningto	on.	•••••	0. 1	000	Plan	eng	,111001111	5 5950	cills o	<i>,</i> 0	ne i	1000,
	•	Marc	oulis /	ΖBa	ind Sa	arava	cos C	6 D. F	Food	plant e	conomi	cs. Tay	lor a	nd Fra	ancis.
		LLC							1	L		2			,
	•	Maha	ajan I	M. Op	oerati	ons R	esear	ch. D	hanpa	at Rai a	and Co	mpany	Priva	te Lin	nited,
		Delh	i						•						
	•	Marc	oulis	ZB.	Food	d Pro	cess	Desig	gn. M	Iarcel 1	Dekker	, Inc , (Cimai	rron 1	Road,
		Mon	ticell	o, Ne	w Yo	rk 12'	701, 1	USA.							
Course	At	the e	end of	f the o	course	e, lear	mers	will t	e abl	e					
Outcomes	C	D1:	Expl	ain th	e para	amete	rs to	be co	nside	red in a	a food p	olant lay	out.		
	C	D2:	Com	pare o	liffer	ent fo	od pr	ocess	ing p	lants la	youts.			_	
	C	03:	Desig	gn sp	ecific	ation	s of :	food	proce	ssing p	plant ar	nd estir	nate	the co	ost of
	pla	ant se	t up a	and o	perati	on.			•		1	- f (1	f 1		
		J4:	Desig	gn the	e mac	niner	y req	uired	ın pı	cocess (control	of the	1000	proce	essing
	plant.														
	making														
Manning he	twe	ween Cos, POs and PSOs													
CO		PO PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Cod	e	PFE-4.8.19
Course Title	e	Food Packaging Technology
Course Cree	dit	3 (2+1)
Objectives	1. To provid	e knowledge on spoilage of food materials, various packaging systems,
of Course	different	packaging materials and their properties
	2. To acqua	int knowledge about various testing of packaging materials and their
	packagin	g equipments.
	3. To acqua	aint knowledge about advanced packaging techniques used in food
	industry.	
	4. To enab	le the students to acquire skills and to understand the packaging
	technolog	y
Course	Factors affe	cting shelf life of food material during storage, Interactions of spoilage
Content	agents with	environmental factors as water, oxygen, light, pH, etc. and general
	principles o	f control of the spoilage agents; Difference between food infection,
	food intoxic	cation and allergy. Packaging of foods, requirement, importance and
	scope, frame	e work of packaging strategy, environmental considerations, Packaging
	systems, typ	bes: flexible and figid; retail and bulk; levels of packaging; special
	solutions a	t packaging machines, technical packaging systems and data
	nanagemen	ad applications. Motal cans, manufacture of two piece and three piece
	cons Plastic	a packaging different types of polymers used in food packaging and
	their barrie	r properties manufacture of plastic packaging materials profile
	extrusion b	lown film/ sheet extrusion blow molding extrusion blow molding
	injection blo	w molding stretch blow molding injection molding Glass containers
	types of gla	ss used in food packaging, manufacture of glass and glass containers.
	closures for	glass containers. Paper and paper board packaging, paper and paper
	board manu	facture process, modification of barrier properties and characteristics
	of paper/ bo	pards. Relative advantages and disadvantages of different packaging
	materials; ef	fect of these materials on packed commodities. Nutritional labelling on
	packages, C	AS and MAP, shrink and cling packaging, vacuum and gas packaging;
	Active pack	aging, Smart packaging, Packaging requirement for raw and processed
	foods, and t	heir selection of packaging materials, Factors affecting the choice of
	packaging	naterials, Disposal and recycle of packaging waste, Printing and
	labelling, L	amination, Package testing: Testing methods for flexible materials,
	rigid mater	als and semi rigid materials; Tests for paper (thickness, bursting
	strength, br	eaking length, stiffness, tear resistance, folding endurance, ply bond
	test, surface	oil absorption test, etc.), plastic film and laminates (thickness, tensile
	strength, gl	oss, haze, burning test to identify polymer, etc.), aluminium foil
	(thickness,]	pin holes, etc.), glass containers (visual defects, colour, dimensions,
Deferrer	impact stren	gth, etc.), metal containers (pressure test, product compatibility, etc.).
References	• Coles, R	, McDowell, D., Kirwan, M.J. 2003. Food Packaging Technology.
	Blackwel	I Publishing Co.
	• Gosby, N	1. 2001. Food Packaging Materials. Applied Science Publication
	• John, P.J	2008. A Handbook on Food Packaging Narendra Publishing House,
	• Mahadev	ia, M., Gowramma, R.V. 2007. Food Packaging Materials. Tata
	McGraw	filli
	• Kobertso	n, G. L. 2001. FOOD Packaging and Shelf life: A Practical Guide.
		ruonsning House.
	• Kobertso	II, G. L. 2005. FOOD Fackaging: Principles and Practice. Second
Course	Eultion.	taylor and Francis rub.
Outcomes	$\mathbf{CO1}$ To co	The course, realliers will be able guaint the students with various food packaging materials
Outcomes	CO1. 10 ac	quaint the students with various aspects of advanced packaging
	methods and	technology.

CO3: To acquaint the students about testing of packaging materials and their packaging equipments.

CO4: To strength industry-institute linkage with leading institutes for promoting entrepreneurship among students.

Mapping b	etwe	en Co	os, PO)s an	d PS	Os									
CO							PO							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course Cod	e	PFE-4.8.20
Course Title	e	Development of Processed Products
Course Cree	dit	3(2+1)
Objectives	1. To provi	de conceptual knowledge about the mass and energy balance used in
of Course	food proc	cessing operations
	2. To acquir	e knowledge about technology of various value-added food products.
	3. To acqua	int students with the process technology involved in extruded products
	fruit juice	e and candy manufacturing.
	4. To enable	e the students to understand the recent trends in food processing e.g.
	cryogenie	c grinding, critical fluid extraction etc.
Course	Theory: Pro	ocess design, Process flow chart with mass and energy balance, Water
Content	activity, U	nit operations and equipments for processing, New product
	developmen	t, Technology for value added products from cereal, pulses and oil
	seeds, Milli	ng, puffing, flaking, Roasting, Bakery products, snack food. Extruded
	products, oi	l extraction and refining, Technology for value added products from
	fruits, veget	ables and spices, Canned foods, Frozen foods, dried and fried foods,
	Fruit juices	, Sauce, Sugar based confection, Candy, Fermented food product,
	Cryogenic g	rinding and critical fluid extraction technology, Technology for animal
	produce pro	cessing, meat, poultry, fish, egg products, Health food, Nutra-ceuticals
	and function	nal food, Organic food.
	Practical:	Process design and process flow chart preparation, preparation of
	different va	lue added products, Visit to roller wheat flour milling, rice milling,
	spice grindi	ng mill, milk plant, dal and oil mill, fruit/vegetable processing plants
	& study of	operations and machinery, Process flow diagram and study of various
	models of th	e machines used in a sugar mill.
References	Geankopli	is C. J. Transport processes and unit operations, Prentice-Hall.
	• Rao, D. C	G. Fundamentals of Food Engineering PHI Learning Pvt. Ltd, New
	Delhi.	
	• Norman N	J. Potter and Joseph H. Hotchikss. Food Science. Chapman and Hall
	Pub.	
	• Acharya, I	K T Everyday Indian Processed foods. National Book Trust.
	• Mudambi	Sumati R., Shalini M. Rao and M V Rajgopal. Food Science. New Age
	Internation	nal Publishers.
	• Negi H.P.	S., Savita Sharma, K. S. Sekhon. Hand book of Cereal technology.
	Kalyani P	ub.
	• K. P. Sud	heer, V. Indira 2007. Post-Harvest Technology of Horticultural Crops,
	New India	Publishing
Course	At the end of	f the course, learners will be able
Outcomes	CO1: To ac	quaint the students with various value-added food products.
	CO2: To ac	quaint the students with various aspects of food processing technology.
	CO3: To ac	quaint the students about advanced food processing technologies.

CO4:	То	study	the	flow	charts	and	understand	the	different	food	processing
technic	ques	5.									

Mapping between COs with POs and PSOs

Mapping b	oetwe	en Co	os, PO	Os an	d PS	Os									
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Please refer mapping of PO and PSO for the style of mapping.

Course Co	de			PFE-	4.8.2	1									
Course Tit	le			Proce	ess E	quipr	nent	Desig	gn						
Course Cre	edit			3 (2 +	- 1)										
Objectives	1.	To pr	ovide	e intro	ducto	ory kr	nowle	dge a	bout	the pro	cess eq	uipmen	t desi	ign	
of Course	2.	To ac	quire	knov	vledg	e mat	erial	select	ion.						
	3.	To ac	quain	nt stuc	lents	with o	desig	n of v	ariou	s food j	process	ing equ	ipme	nt e.g	. heat
		excha	anger	s, ele	vators	s etc.									
	4.	To en	able	the st	udent	s to p	repar	ring c	ompu	ter add	ed desi	gns.			
Course	Th	neory	: Int	roduc	tion	on p	proces	ss eq	uipm	ent de	sign, A	Applica	tion	of d	esign
Content	en	ginee	ring t	for p	roces	sing	equip	ment	s, De	sign p	aramete	ers and	gene	eral d	lesign
	pro	ocedu	re, N	I ateri	al sp	ecific	cation	i , Ty	pes o	of mate	erial fo	r proce	ess e	quipn	nents,
	De	esign	codes	s, Pres	ssure	vesse	el des	ign, l	Desig	n of clo	eaners.	Design	of tu	ıbulaı	r heat
	ex	chang	ger, sh	nell ar	nd tub	be hea	at exc	hang	er and	l plate	heat ex	change	r, Des	sign o	f belt
	co	nveye	er, scr	ew co	onvey	er and	d buc	ket el	evato	r, Desig	gn of di	ryers. D	esign	n of m	illing
	eq	uipme	ents.	Optin	nizati	on of	desig	n wit	h resp	pect to	process	s efficie	ncy,	energ	y and
	co	st, Co	mput	er Ai	ded E	Desigr	1.								
	Pr	actic	al: D	Desigr	n of p	oressu	re ve	ssel,	clean	ers, mi	lling eo	quipme	nts, ti	ıbulaı	r heat
	ex	chang	ger, sł	nell a	nd tu	be ty	pe he	eat ex	chang	ger, pla	te heat	exchai	nger,	dryer	; belt
	co	nveyc	or, bu	cket e	elevat	or, sc	rew c	conve	yor.						
References	•	Maha	ajani,	V.	V. a	nd U	Jmarj	i, S.	В.,	Joshi's	Proce	ess equ	iipme	ent de	esign,
		Macr	nillar	1.											
	•	Bhatt	tachai	ryya,	B. (C., Iı	ntrodu	uctior	n to	Chemi	cal Eq	uipmen	t de	sign,	CBS
		Publi	shers	and l	Distri	butor	s.								
	•	Gean	kopli	s C. J	. Tra	nspor	t proc	cesses	and	unit op	eration	s, Prent	ice-H	[all.	
	•	Rao,	D. G	3. Fur	ndame	entals	of F	Food	Engin	eering	PHI L	earning	g Pvt.	Ltd,	New
		Delh	i.												
Course	At	the e	nd of	the c	ourse	, lear	ners v	will b	e able	;					
Outcomes	C)1: T	o acc	quaint	t the	stude	nts w	vith p	rincip	oles of	process	s equip	ment	desig	n for
	de	velop	ment	of pr	ocess	equip	omen	t.							
	CO	Э2: Т	o acq	uaint	the s	tuden	ts abo	out va	rious	design	codes.				
	C)3: Т	o des	ign va	arious	s food	l proc	luctio	n pro	cesses.					
		<u>J4: 1</u>	o leai	m CA	D the		erent	food	proce	ssing te	echniqu	les.			
Mapping b	etwe	PO PSO													
	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
CO1	1	4	3	4	3	0	/	ð	9	10	11	12		2	3
CO_2															
004															

Course Code	•	REE -4.8.22
Course Title		Photovoltaic Technology and Systems
Course Cred	it	3 (2+1)
Objectives	1. To	develop a comprehensive technological understanding in solar PV system
of Course	con	nponents.
	2. To	understand physical theories and phenomena of solar cell with inclusion of
	sem	niconductor physics.
	3. To	discuss different aspects of solar photovoltaic technologies for applications
	in b	uilding integrated PV, standalone system and power plant system.
	4. To	provide in-depth understanding of design parameters to help design and
	sim	ulate the performance of a solar PV power plant.
	5. To	pertain knowledge about planning, project implementation and operation of
	sola	ar PV power generation.
Course	Theor	y:
Content	Solar I	PV Technology: Advantages, Limitations, Current Status of PV technology,
	SWO	r analysis of PV technology. Types of Solar Cell, Wafer based Silicon Cell,
	Thin f	ilm amorphous silicon cell Thin Cadmium Telluride (CdTe) Cell, Copper
	Indiun	n Gallium Selenide (CiGS) Cell, Thin film crystalline silicon solar cell.
	Solar I	Photo Voltaic Module: Solar cell, solar module, solar array, series & parallel
	connec	ctions of cell, mismatch in cell, fill factor, effect of solar radiation and
	temper	rature on power output of module, I-V and power curve of module. Balance
	of Sol	ar PV system: Introduction to batteries, battery classification, lead acid
	battery	y, Nicked Cadmium battery, comparison of batteries, battery parameters,
	Charge	e controller: types of charge controller, function of charge controller, PWM
	type, I	MPPT type charge controller, Converters: DC to DC converter and DC to
	AC ty	pe converter. Application of Solar PV system. Solar home lighting system,
	solar l	antern, solar fencing, solar street light, solar water pumping system, Roof
	top so	lar photovoltaic power plant and smart grid.
	Practi	cals:
	Study	of V-I characteristics of solar PV system, smart grid technology and
	applic	ation, manufacturing technique of solar array, different DC to DC and DC
	to A	converter, domestic solar lighting system, various solar module
	techno	blogies, safe measurement of PV modules electrical characteristics and
	Comm	hissioning of complete solar PV system.
References	I. Brit	tish BioGen. 1997, Anaerobic digestion of farm and food processing
	prac	ctices- Good practice guidelines, London, available on
		w.onusnologen.co.UK.
	2. Dui	fossionals
	2 Cor	tessionals.
	J. Cel	vironment Ecology Available:
		w ens dk
	5 Sol	ar photovoltaic - fundamentals, technologies and applications, third edition
	by s	solanki chetan singh ISBN $978-81-203-5111-0$.
Course	At the	end of the course, learners will be able
Outcomes	CO1.	To understand the physical principles of the photovoltaic (PV) solar cell and
0	what a	re its sources of losses
	CO2.	To know the electrical (current-voltage and power-voltage) characteristics
	of sola	ar cell, panel or generator and how the environment parameters influence it
	CO3.	To know the most important characteristics of the elements within a PV
	system	h, battery and charge controller, DC/DC converter, DC/AC converter
	(invert	ter) and loads
	CO4 .	To understand the role of solar energy in the context of regional and global
	energy	system, its economic, social and environmental implications, and the
	impac	t of technology on a local and global context

CO5. To know the main lines of research in the field of photovoltaic technology and solar energy.

Mapping	Mapping between Cos, POs and PSOs														
CO					PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course Title Waste and By-Products Utilization Course Credit 3 (2+1) Objectives 1.To ascess the activities involved for the proposed and determine the type, its characteristics, nature and estimated volumes of waste to be generated. 2.To identify potential environmental impacts from the generation of waste. 3.To design appropriate waste handling and an appropriate technology for energy generation. 4.To enable students to understand of the concept of waste to energy. 5.To learn about the best available technologies for waste to energy. 6.To link legal, technical & management principles for production of energy from waste. Course Theory: Types and formation of by-products and waste; Magnitude of waste generation in different food processing industries; Uses of different agricultural by-products from rice mill, sugarcane industry, oil mill etc., Concept, scope and maintenance of waste management and effluent treatment, Temperature, pH, Oxygen demands (BOD, COD), fat, oil and grease content, metal content, forms of phosphorous and sulphur in waste waters, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues. Waste utilization in various industries, furnaces and boilers run on agricultural wastes and byproducts, briquetting of biomass as fuel, production of charcoal briquette, generation of electricity using surplus biomass, producer gas generation and management of institutional community and family size biogas plants, concept of vermin-composting, Pre-treatment of waste: sedimentation, coagulation, flocculation and floatation, Secondary treatments: Biological and che	Course Code	REE -4.8.23
Course Credit 3 (2+1) Objectives of Course 1.To assess the activities involved for the proposed and determine the type, its characteristics, nature and estimated volumes of waste to be generated. 2.To identify potential environmental impacts from the generation of waste. 3.To design appropriate waste handling and an appropriate technology for energy generation. 4.To enable students to understand of the concept of waste to energy. 5.To learn about the best available technologies for waste to energy. 6.To link legal, technical & management principles for production of energy from waste. Course Theory: Types and formation of by-products and waste; Magnitude of waste generation in different food processing industries; Uses of different agricultural by-products from rice mill, sugarcane industry, oil mill etc., Concept, scope and maintenance of waste management and effluent treatment, Temperature, pH. Oxygen demands (BOD, COD), fat, oil and grease content, metal content, forms of phosphorous and sulphur in waste waters, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, Waste utilization in various industries, furnaces and boilers run on agricultural wastes and byproducts, briquetting of biomass as fuel, production of charcoal briquette, generation of electricity using surplus biomass, producer gas generation and utilization, Secondary treatments: Biological and chemical oxygen demand for different food plant waste- trickling filters, oxidation diches, activated sludge process, rotating biological contractors, lagoons, Tertiary treatments: Advanced waste water treatment process-sand, coal and activated carbon filters	Course Title	Waste and By-Products Utilization
Objectives of Course 1.To assess the activities involved for the proposed and determine the type, its characteristics, nature and estimated volumes of waste to be generated. 2.To identify potential environmental impacts from the generation of waste. 3.To design appropriate waste handling and an appropriate technology for energy generation. 4.To enable students to understand of the concept of waste to energy. 5.To learn about the best available technologies for waste to energy. 6.To link legal, technical & management principles for production of energy from waste. Course Content Theory: Types and formation of by-products and waste; Magnitude of waste generation in different food processing industries; Uses of different agricultural by-products from rice mill, sugarcane industry, oil mill etc., Concept, scope and maintenance of waste management and effluent treatment, Temperature, pH, Oxygen demands (BOD, COD), fat, oil and grease content, metal content, forms of phosphorous and sulphur in waste waters, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, Waste utilization in various industries, furnaces and boilers run on agricultural wastes and byproducts, briquetting of biomass as fuel, production of charcoal briquette, generation of electricity using surplus biomass, producer gas generation and management of institutional community and family size biogas plants, concept of vermin-composting, Pre-treatment of waste- sedimentation, coagulation, flocculation and floatating, Secondary treatments: Biological and chemical oxygen demand for different food plant waste- trickling filters, oxidation ditches, activated sludge process, rotating biological contractors, lagoons, Tertiary treatments: Advanced waste	Course Cred	it 3 (2+1)
Course ContentTheory: Types and formation of by-products and waste; Magnitude of waste generation in different food processing industries; Uses of different agricultural by-products from rice mill, sugarcane industry, oil mill etc., Concept, scope and maintenance of waste management and effluent treatment, Temperature, pH, Oxygen demands (BOD, COD), fat, oil and grease content, metal content, forms of phosphorous and sulphur in waste waters, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, Waste utilization in various industries, furnaces and boilers run on agricultural wastes and byproducts, briquetting of biomass a fuel, production of charcoal briquette, generation of electricity using surplus biomass, producer gas generation and utilization, Waste treatment and disposal, design, construction, operation and management of institutional community and family size biogas plants, concept of vermin-composting, Pre-treatment of waste: sedimentation, coagulation, flocculation and floatation, Secondary treatments: Biological and chemical oxygen demand for different food plant waste- trickling filters, oxidation ditches, activated sludge process, rotating biological contractors, lagoons, Tertiary treatments: Advanced waste water treatment process-sand, coal and activated carbon filters , phosphorous, sulphur, nitrogen and heavy metals removal, Assessment, treatment plants, Environmental performance of food industry to comply with ISO-14001 standards. Practicals: Determination of temperature, pH, turbidity solids content, BOD and COD of waste water, Determination of ash content of agricultural wastes, and determination of un-burnt carbon in ash, Study about briquetting of agricultural residues, Estimation of excess air for better combustion of briquettes, Study of extraction of oil from rice bran, Study on bioconversion of agricultural waste	Objectives of Course	 To assess the activities involved for the proposed and determine the type, its characteristics, nature and estimated volumes of waste to be generated. To identify potential environmental impacts from the generation of waste. To design appropriate waste handling and an appropriate technology for energy generation. To enable students to understand of the concept of waste to energy. To learn about the best available technologies for waste to energy. To link legal, technical & management principles for production of energy from waste.
Keierences [1. Markel, I.A. 198]. Managing Livestock Waste. AVI Publishing Co	Course Content	 Theory: Types and formation of by-products and waste; Magnitude of waste generation in different food processing industries; Uses of different agricultural by-products from rice mill, sugarcane industry, oil mill etc., Concept, scope and maintenance of waste management and effluent treatment, Temperature, pH, Oxygen demands (BOD, COD), fat, oil and grease content, metal content, forms of phosphorous and sulphur in waste waters, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, Waste utilization in various industries, furnaces and boilers run on agricultural wastes and byproducts, briquetting of biomass as fuel, production of charcoal briquette, generation of electricity using surplus biomass, producer gas generation and utilization, Waste treatment and disposal, design, construction, operation and management of institutional community and family size biogas plants, concept of vermin-composting, Pre-treatment of waste: sedimentation, coagulation, flocculation and floatation, Secondary treatments: Biological and chemical oxygen demand for different food plant waste– trickling filters, oxidation ditches, activated sludge process, rotating biological contractors, lagoons, Tertiary treatments: Advanced waste water treatment process-sand, coal and activated carbon filters , phosphorous, sulphur, nitrogen and heavy metals removal, Assessment, treatment plants, Environmental performance of food industry to comply with ISO-14001 standards. Practicals: Determination of temperature, pH, turbidity solids content, BOD and COD of waste water, Determination of ash content of agricultural wastes, Recovery of germ and germ oil from by-products of cereals, Visit to various industries using waste and food by-products.

	2. Pantastico, ECB. 1975. Post-Harvest Physiology, Handling and utilization of Tropical and Sub-tropical fruits and vegetables, AVI Pub. Co.														
		of Tro	opica	l and	Sub-t	ropic	al fru	its an	d veg	getables	, AVI I	Pub. Co).		
	3.		Shew	vfelt,	R.L. :	and P	russi,	S.E.	1992	. Post-H	Harvest	Handli	ng –	A Sys	stems
		appro	ach,	Acad	emic	Press	Inc.								
	4.		USD	A. 19	92. A	Agricu	ıltura	l Was	ste M	anagem	nent Fie	eld Han	d boo	ok. U	SDA,
		Wash	ingto	n DC	•										
	5.		Weic	chmar	nn J.	1987.	Post	-Harv	vest P	hysiolc	gy of v	vegetab	les, I	Marce	and
		Dekk	er Ve	erlag.											
	6.		V.K.	Josł	ni &	S.K	. Sha	arma.	Foo	d Proc	cessing	Waste	e Ma	inage	ment:
		Treat	ment	& Ut	ilizati	ion. N	Jew I	ndia I	Publis	hing A	gency.				
	7.		Vass	o Ore	eopou	lou a	nd W	vinfrie	ed Ru	ss (Edi	ted). 20	007. Ut	ilizat	ion o	f By-
		produ	icts a	nd T	reatm	nent c	of wa	ste in	the	Food 1	Industr	y. Sprii	nger	Scien	ce &
		Busin	ess n	nedia,	LLC	233	New	York	•						
	8.		Prasł	nar, A	nupa	ma a	nd B	ansal	Prat	ibha. 2	007-08	. Indus	trial	Safet	y and
		Envir	onme	ent. S	К. К	ataria	and	sons,	New	Delhi					
	9.		Garg	, S K	. 1998	3. En	viron	ment	al Eng	gineerir	ıg (Vol	. II) – S	ewag	ge Dis	posal
		and Air Pollution Engineering. Khanna Publishers, New Delhi.													
	10	10. Bhatia, S.C. 2001. Environmental Pollution and Control in Chemical													
		Process Industries. Khanna Publishers, New Delhi.													
Course	A	t the e	end o	f the	cours	e, lea	rners	will t	be abl	e					
Outcomes	C	01: 7	ſo ch	aracte	erize	differ	ent b	ioma	ss fee	dstocks	based	on its o	const	ituent	s and
	pr	opert	ies										_		
	C	O2: 1	fo ur	nderst	and a	ind ev	aluat	e var	ious l	biomas	s pretre	eatment	and	proce	essing
	te	chniq	ues i	n terr	ns of	their	appli	icabil	ity fo	r differ	ent bio	mass ty	ype fo	or bic	mass
	co	onvers	sion p	proces	ses										
	C	03:	lo u	inders	tand	the 1	proce	ss of	com	bustion	i, pyro	lysis, g	gasifi	cation	and
	110	queta	ction	tor	produ	uctior	n of	value	e add	led bio	o-produ	cts, bi	ogas,	b10-	CNG
	ge	enerat	ion e	tc.	. 1										1
	C	04:	τοι	inders	stand	basi	cs of	b101	uels,	their	produc	tion te	chno	logies	and
	applications in various energy utility routes.														
Mapping b	etween Cos, POs and PSOs														
CO	1		2	4	=	(PO	0	0	10	11	10	1	<u>PSU</u>	2
<u>CO1</u>	1	2	3	4	3	0	/	0	9	10	11	12	1	2	3
C02															
C03															
UU4															

Course co	ode		CSE-4.8.24												
Course ti	tle		Artificial Intelligence												
Corse cre	edit		3(3+0)												
Objective	e of		1. To learn the fundamental concepts of Artificial Intelligence (AI)												
Course			systems.												
			2. To learn various AI techniques such as expert systems, fuzzy logic,												
			neural network and genetic algorithms and their applications.												
			3. To get awareness regarding various application areas in the field of												
			AI.												
			4. To er	nable	stud	ent to	do	simp	ole e	xercis	ses of A	ΑI			
			techniques – AI programming languages, introduction to LISP and PROLOG- problem spaces and searches, blind search strategies, Breadth first- Depth first- heuristic search techniques Hill climbing: best first-A* algorithm AO* algorithm- game tree, Min max algorithms, game playing- alpha beta pruning. Knowledge representation issues, predicate logic- logic programming, semantic nets- frames and inheritance, constraint propagation, representing knowledge using rules, rules based deduction systems. Reasoning under uncertainty, review of probability, Baye's probabilistic interferences and Dempster shafer theory, Heuristic methods, symbolic reasoning under uncertainty. Statistical reasoning Eurzy												
		reasoning, Temporal reasoning, Non monotonic reasoning, Planning and planning in situational calculus, representation for planning, partial order planning algorithm, learning from examples, discovery as learning, learning by analogy, explanation based learning, neural nets, genetic algorithms. Principles of Natural language processing, rule based systems architecture, Expert systems, knowledge acquisition concepts, AI application to robotics, and current trends in intelligent systems.													
Reference	es:		 Russell, S. and P. Norvig. 1998. Artificial Intelligence: A Modern 												
			Approach. Prentice Hall.												
			 Rich, Elain and Kevin Knight. 1991. Artificial Intelligence. 												
				TMH. • Detrick Honry Winston 1002 Artificial intelligence Addition											
			 Patrick Henry Winston. 1992. Artificial intelligence. Addition Wesley 3rd Ed 												
			Wesley 3rd Ed. Nilson Nils I. Principles of Artificial Intelligence. Norse												
			 Nilson Nils J. Principles of Artificial Intelligence. Norsa Publishing House 												
Course Or			Publishing House. At the end of the course, learners will be able.												
Course O	utcome	es	At the end of the course, learners will be able CO1: Understanding of fundamental concepts related to artificial												
			intelligence.												
			CO2 : Understanding of the various AI techniques.												
			CO3 : Understanding of the applications of artificial intelligence in												
			various domains.												
		CO4: Develop a simple AI application.													
Mapping	betwe	en C	Cos, POs and PSOs												
CO		1	PO							PSC)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
<u>CO1</u>															
CO2															
<u>CO3</u>															
CO4															

Course Code	9	ME-	ME-4.8.25										
Course Title		Mechatronics											
Course Cred	lit	3 (2+	3 (2+1)										
Objectives	Objectiv	e											
of Course	1. T	1. To acquaint and equip the students with important terminologies of											
	m	echatro	onics										
	2. T	o acqua	int an	d equ	iip w	ith k	nowled	lge of s	sensors	s, interf	ace a	nd con	trol
	3. T	o introc	luce co	oncep	ots of	Mat	hemati	cal Mo	odels, l	Enginee	ering	Systen	ns
	4. T	o introc	luce ap	oplica	ation	of m	echatr	onics, a	automa	ation in	agric	culture	
Course	Theory												
Content	Definitio	n of me	chatro	nics,	meas	suren	nent sy	stem, c	control	system	ıs, mi	cropro	cessor
	based con	ntroller	s, mec	hatro	onics	appr	oach. S	Sensor	s and t	ransdu	cers,	perfori	nance
	terminology, Displacement, Position & amp; Proximity Sensors, photo-electric												
	transducers, flow transducers, optical sensors and transducers. Actuators,												lators,
	Mechanical Actuation Systems, Hydraulic & amp; Pneumatic Actuation Systems.											stems,	
	Electrical Actuation												
	Systems, A.C. Motor, D.C. Motor, Stepper Motor. Signal conditioning process,												ocess,
	filtering	digital	signal	, mu	ltiple	xers,	data a	acquisi	tion, c	ligital s	signal	proce	ssing,
	measuren	nent s	ystem,	pul	se n	nodul	ation,	data	presen	tation	syste	ms. S	ystem
	modellin	g &amj	p; cont	trol,	Math	emat	tical M	lodels,	Engin	eering	Syste	ms, El	ectro-
	mechanic	al &an	ıp; Hy	draul	lic-m	echa	nical S	ystems	s, Mod	elling I	Dynar	nic Sys	stems,
	Transfer	Functi	ons, C	Contr	ol M	lodes	, PID	Contr	oller.	Micro-	proce	essor &	kamp;
	computer	, Con	nputer	and	d In	terfa	cing,	Micro	-comp	uter S	tructu	ure, N	Aicro-
	controller	s, App	licatio	n of	Micr	ocon	trollers	s, PLC	. Robo	otics, R	obot	compo	nents,
	robot classification and specification, Work envelopes, other basic parameters of												
	robots. R	obot ap	plicati	ons,	Robo	ot app	olicatio	ns in n	nanufa	cturing	, Mat	erial tr	ansfer
	and mach	ine loa	ding/u	nloa	ding,	Proc	essing	operat	tions li	ke Wel	ding	&	,
	Painting,	Assem	bly op	erati	ons,]	Inspe	ction a	utoma	tion, F	uture a	pplica	ations.	
	Practical					_			-	-			
	Selection	of sen	sor for	a pa	rticu	lar ap	oplicati	on fro	m Cata	alogue/	Interr	net. De	sign a
	mechatro	nics pi	oduct/	syste	em a	nd ii	ncorpo	rate ap	oplicat	ion of	mech	natroni	cs for
	enhancin	g prodi	ict val	ues.	To s	tudy	the ha	rdware	e and s	oftware	e of r	nechat	ronics
	kit. To m	love a t	table i	n X-	direc	tion	within	the rai	nge of	proxin	nity s	ensors	using
	Control-2	x softw	are. To	o run	a mo	otor v	with PI	.C. To	run a	convey	or wi	th com	puter.
	To study	the mo	vemen	$\frac{100}{100}$	actua	ting of	cylinde	ers and	sensor	rs.			
References	Bolton, V	V. Mec.	hatron	ics. F	earse	on Eo	lucatio	n Asia	l. 				
	Wolfram	, Stadle	r. Ana	llytic	al Ro	botic	s and I	Mecha	tronics	6. MC-G	raw I	H1II.	
	Doebin I Mahind	2.0. M	easure	ment	Di Di	ems.	MC-G	raw HI	III. A atma m		тт		
	Milan S X	A.F. III	duction	n to l		gitar	Analyz		toma	nd onn	In.		
	Dearson I	- muo Educati	on Asi		nia		Anarys	515, 5y5	unis a	nu appi	ncain	JIIS ,	
	Introduct	ion to F	20hoti	cs P	earso	n Ed	ucation	n Asia					
Course	At the en	$\frac{1011}{101}$ to 1		$\frac{1}{2}$	arner	s wil	l be ab	1 751a.					
Outcomes	$CO1 \cdot \Delta h$	ility to	under	stand	l mec	hatro	nice	10.					
Outcomes	$CO2 \cdot To$	unders	tand o	n coi	ncent	s of e	sensors	& cor	ntrols				
	CO3. Ar	nlv ex	ecute :	and c	ontro	ol aut	omatic	n in a	priculti	ire mac	hines	2	
	CO4: Ab	ility to	use ro	botic	mac	hine	ry in a	gricult	ure.				
Mapping bet	tween Cos	, POs a	nd PS	5Os			<u> </u>						
			5		PO							PSO	
	2 3	4	5	6	7	8	9	10	11	12	1	2	3
CO1									1				
CO2													
CO3													
CO4													

Course Code	e	REE -4.8.26								
Course Title		Energy Conservation and Audit in Agricultural Industry								
Course Cred	lit	3 (2+1)								
Objectives	1.	To understand the energy management, conservation processes, principles								
of Course	of er	nergy auditing, energy flow diagram, economics of energy conservation								
	oppo	rtunities.								
	2.	To understand the energy management information systems, various key								
	featu	res of Energy Conservation Act and ECBC.								
	3.	To understand the scope for energy conservation in electrical and thermal								
	energ	gy utilities.								
Course	Theo	ry: General energy problem, Energy consumption in Agriculture Sector								
Content	and other sectors, demand supply gap, Scope for energy conservation and									
	benefits, Energy conservation Principle-Maximum energy efficiency, Maximum									
	cost effectiveness, Features of EC act Standards and labeling, designated									
	consumers, Energy conservation Building codes (ECBC), Energy manageme concept and objectives, Initialing planning, Leading controlling, Promotin Monitoring and reporting, Energy management programmes, Energy savin opportunities in electric motors, benefits of power factor improvement and it									
	techn	iques-shunt capacitor, synchronous condenser etc, effects of harmonics on								
	motors and remedies leading to energy conservation, energy conservation									
	VSD,	Energy conservation in electric furnaces, ovens and boilers, lighting								
	techniques- Natural, CFL, LED lighting sources and fittings, New Equipme									
	technology, staffing, training, calculation and costing of energy conservation									
	project, Depreciation, cost, sinking fund method cost evaluation by return									
	Investment (ROI) and pay back method etc, Risk analysis, case analys									
	Performance improvement of existing power plant, cogeneration, small hyd									
	DG set, Demand side management, load response programmes; Types of tar									
	and restructuring of electric tariff Technical measures to optimize T and									
	losses, Energy audit and its benefits, Energy flow diagram Preliminary, Detaile									
	energy audit. Methodology of -preliminary energy audit and Detailed energy									
	audit Phase I, Pre audit, Phase II- Audit and Phase III- Post audit, Energy au									
	report, Electrical Measuring Instruments - Power Analyser. Com									
	analy	zer, fuel efficiency monitor, thermometer-contact, infrared, pitot tube and								
	mano	ometer, water flowmeter, leak detector, tachometer and luxmeter, IE rules								
	and re	egulations for energy audit Electricity act(Numerical).								
	Pract	ical: CASE STUDY OF AGRO INDUSRY FOR THE FOLLOWING								
	SUB	STUDIES:								
	List	various energy management systems prevailing in a Agro								
	indus	try/Organization; Identify the energy management skills and strategies in								
	the er	nergy management system; Organize a energy management programme in								
	a giv	en industry; List the various energy conservation methods useful in a								
	partic	ular industry; Identify the critical areas where energy conservation is								
	requir	red: Select appropriate energy conservation method for the critical area								
	identi	fied. List the various energy conservation methods useful in power								
	gener	ation transmission and distribution: Find out the payback period for a given								
	generation, transmission and distribution; Find out the payback period for a									
	energ	y conservation equipment, Determine depreciation cost of a given energy								
	conservation project/equipment; Draw the energy flow diagram f									
	industry/shop floor division; Identify various measuring instruments us									
	energy audit; Use various measuring instruments for carrying out energ									
	Prepa	re a sample energy audit questionnaire; Prepare a energy audit report;								
	Prepa	re a technical report on energy conservation act 2003; Prepare a technical								
	report	t on ECBC 2.								
References	1.Elect	ric Energy Generation, Utilisation and Conservation.								
	Sivas	ganaraju, S Pearson, New Delhi, 2012								

	2. Electrical Power V. K. Mehta Khanna and Khanna Publishers, New Dehli														
	3.]	Electr	ical I	Power	r S. L	. Upp	al Kł	nanna	and H	Khanna	Publis	shers, N	ew D	Dehli	
	4.	4. Art and Science of utilization of Electrical Energy H. Partab Dhanapat Rai and													
		Sons, New Dehli													
	5.]	5. Prasanna Chandra Project Management Tata Mcgraw Hill, New Delhi													
	6.]	6. Prasanna Chandra Financial Management Tata Mcgraw Hill, New Delh													
	7.	7. Wayne C. Turner Energy Management Handbook –													
	8.]	Paul () Cal	lagha	n Ene	ergy i	nana	geme	nt Mc	graw H	Iill, Ne	w Delh	i		
	9.	www.	bee-i	ndia.	com	Fund	lamer	ntals	of el	lectrica	l syste	em Bui	eau	of E	nergy
]	Efficiency													
Course	A	At the end of the course, learners will be able													
Outcomes	C	CO1: To understand the current energy scenario along with energy management													
	an	and strategies and to take action on energy conservation techniques.													
	C	02 : T	'o ana	alyze	the da	ata fo	r ene	rgy m	onito	ring an	d targe	ting.			
	C	03: [Discu	ss the	princ	ciples	of er	nergy	mana	igemen	t, cons	ervatior	1 and	audit	ing in
	th	ermal	and	electr	ical u	tilitie	es								
	C	04: A	sses	s scop	be of o	energ	y con	iserva	tion i	n elect	rical an	d therm	nal ut	ilities	
	C	05: A	naly	sis of	econ	omics	s of er	nergy	conse	ervatio	n oppor	tunities	in el	ectric	al and
	th	thermal utilities and reporting of energy audit													
Mapping between Cos, POs and PSOs															
CO							PO					-		PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															